Question
Simplify the expression
144k2−120k
Evaluate
3(6k−5)×8k
Multiply the terms
24(6k−5)k
Multiply the terms
24k(6k−5)
Apply the distributive property
24k×6k−24k×5
Multiply the terms
More Steps

Evaluate
24k×6k
Multiply the numbers
144k×k
Multiply the terms
144k2
144k2−24k×5
Solution
144k2−120k
Show Solution

Find the roots
k1=0,k2=65
Alternative Form
k1=0,k2=0.83˙
Evaluate
3(6k−5)×8k
To find the roots of the expression,set the expression equal to 0
3(6k−5)×8k=0
Multiply
More Steps

Multiply the terms
3(6k−5)×8k
Multiply the terms
24(6k−5)k
Multiply the terms
24k(6k−5)
24k(6k−5)=0
Elimination the left coefficient
k(6k−5)=0
Separate the equation into 2 possible cases
k=06k−5=0
Solve the equation
More Steps

Evaluate
6k−5=0
Move the constant to the right-hand side and change its sign
6k=0+5
Removing 0 doesn't change the value,so remove it from the expression
6k=5
Divide both sides
66k=65
Divide the numbers
k=65
k=0k=65
Solution
k1=0,k2=65
Alternative Form
k1=0,k2=0.83˙
Show Solution
