Question
Solve the equation(The real numbers system)
x∈/R
Alternative Form
No real solution
Evaluate
3×8x2=4(6x−10)
Multiply the numbers
24x2=4(6x−10)
Expand the expression
More Steps

Evaluate
4(6x−10)
Apply the distributive property
4×6x−4×10
Multiply the numbers
24x−4×10
Multiply the numbers
24x−40
24x2=24x−40
Move the expression to the left side
24x2−24x+40=0
Substitute a=24,b=−24 and c=40 into the quadratic formula x=2a−b±b2−4ac
x=2×2424±(−24)2−4×24×40
Simplify the expression
x=4824±(−24)2−4×24×40
Simplify the expression
More Steps

Evaluate
(−24)2−4×24×40
Multiply the terms
More Steps

Multiply the terms
4×24×40
Multiply the terms
96×40
Multiply the numbers
3840
(−24)2−3840
Rewrite the expression
242−3840
Evaluate the power
576−3840
Subtract the numbers
−3264
x=4824±−3264
Solution
x∈/R
Alternative Form
No real solution
Show Solution

Solve the equation(The complex numbers system)
Solve using the quadratic formula in the complex numbers system
Solve by completing the square in the complex numbers system
Solve using the PQ formula in the complex numbers system
x1=21−651i,x2=21+651i
Alternative Form
x1≈0.5−1.190238i,x2≈0.5+1.190238i
Evaluate
3×8x2=4(6x−10)
Multiply the numbers
24x2=4(6x−10)
Expand the expression
More Steps

Evaluate
4(6x−10)
Apply the distributive property
4×6x−4×10
Multiply the numbers
24x−4×10
Multiply the numbers
24x−40
24x2=24x−40
Move the expression to the left side
24x2−24x+40=0
Substitute a=24,b=−24 and c=40 into the quadratic formula x=2a−b±b2−4ac
x=2×2424±(−24)2−4×24×40
Simplify the expression
x=4824±(−24)2−4×24×40
Simplify the expression
More Steps

Evaluate
(−24)2−4×24×40
Multiply the terms
More Steps

Multiply the terms
4×24×40
Multiply the terms
96×40
Multiply the numbers
3840
(−24)2−3840
Rewrite the expression
242−3840
Evaluate the power
576−3840
Subtract the numbers
−3264
x=4824±−3264
Simplify the radical expression
More Steps

Evaluate
−3264
Evaluate the power
3264×−1
Evaluate the power
3264×i
Evaluate the power
More Steps

Evaluate
3264
Write the expression as a product where the root of one of the factors can be evaluated
64×51
Write the number in exponential form with the base of 8
82×51
The root of a product is equal to the product of the roots of each factor
82×51
Reduce the index of the radical and exponent with 2
851
851×i
x=4824±851×i
Separate the equation into 2 possible cases
x=4824+851×ix=4824−851×i
Simplify the expression
More Steps

Evaluate
x=4824+851×i
Divide the terms
More Steps

Evaluate
4824+851×i
Rewrite the expression
488(3+51×i)
Cancel out the common factor 8
63+51×i
Simplify
21+651i
x=21+651i
x=21+651ix=4824−851×i
Simplify the expression
More Steps

Evaluate
x=4824−851×i
Divide the terms
More Steps

Evaluate
4824−851×i
Rewrite the expression
488(3−51×i)
Cancel out the common factor 8
63−51×i
Simplify
21−651i
x=21−651i
x=21+651ix=21−651i
Solution
x1=21−651i,x2=21+651i
Alternative Form
x1≈0.5−1.190238i,x2≈0.5+1.190238i
Show Solution
