Question
Simplify the expression
2x+8y
Evaluate
3(9x−4y)−5(5x−4y)
Expand the expression
More Steps

Calculate
3(9x−4y)
Apply the distributive property
3×9x−3×4y
Multiply the numbers
27x−3×4y
Multiply the numbers
27x−12y
27x−12y−5(5x−4y)
Expand the expression
More Steps

Calculate
−5(5x−4y)
Apply the distributive property
−5×5x−(−5×4y)
Multiply the numbers
−25x−(−5×4y)
Multiply the numbers
−25x−(−20y)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−25x+20y
27x−12y−25x+20y
Subtract the terms
More Steps

Evaluate
27x−25x
Collect like terms by calculating the sum or difference of their coefficients
(27−25)x
Subtract the numbers
2x
2x−12y+20y
Solution
More Steps

Evaluate
−12y+20y
Collect like terms by calculating the sum or difference of their coefficients
(−12+20)y
Add the numbers
8y
2x+8y
Show Solution

Factor the expression
2(x+4y)
Evaluate
3(9x−4y)−5(5x−4y)
Simplify
More Steps

Evaluate
3(9x−4y)
Apply the distributive property
3×9x+3(−4y)
Multiply the terms
27x+3(−4y)
Multiply the terms
More Steps

Evaluate
3(−4)
Multiplying or dividing an odd number of negative terms equals a negative
−3×4
Multiply the numbers
−12
27x−12y
27x−12y−5(5x−4y)
Simplify
More Steps

Evaluate
−5(5x−4y)
Apply the distributive property
−5×5x−5(−4y)
Multiply the terms
−25x−5(−4y)
Multiply the terms
More Steps

Evaluate
−5(−4)
Multiplying or dividing an even number of negative terms equals a positive
5×4
Multiply the numbers
20
−25x+20y
27x−12y−25x+20y
Subtract the terms
More Steps

Evaluate
27x−25x
Collect like terms by calculating the sum or difference of their coefficients
(27−25)x
Subtract the numbers
2x
2x−12y+20y
Add the terms
More Steps

Evaluate
−12y+20y
Collect like terms by calculating the sum or difference of their coefficients
(−12+20)y
Add the numbers
8y
2x+8y
Solution
2(x+4y)
Show Solution
