Question
Simplify the expression
−3a2b−3ac2+3a2c−3b2c+3b2a+3bc2
Evaluate
3(a−b)(b−c)(c−a)
Multiply the terms
(3a−3b)(b−c)(c−a)
Multiply the terms
More Steps

Evaluate
(3a−3b)(b−c)
Apply the distributive property
3ab−3ac−3b×b−(−3bc)
Multiply the terms
3ab−3ac−3b2−(−3bc)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
3ab−3ac−3b2+3bc
(3ab−3ac−3b2+3bc)(c−a)
Apply the distributive property
3abc−3aba−3ac×c−(−3aca)−3b2c−(−3b2a)+3bc×c−3bca
Multiply the terms
3abc−3a2b−3ac×c−(−3aca)−3b2c−(−3b2a)+3bc×c−3bca
Multiply the terms
3abc−3a2b−3ac2−(−3aca)−3b2c−(−3b2a)+3bc×c−3bca
Multiply the terms
3abc−3a2b−3ac2−(−3a2c)−3b2c−(−3b2a)+3bc×c−3bca
Multiply the terms
3abc−3a2b−3ac2−(−3a2c)−3b2c−(−3b2a)+3bc2−3bca
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
3abc−3a2b−3ac2+3a2c−3b2c+3b2a+3bc2−3bca
Subtract the terms
More Steps

Evaluate
3abc−3bca
Rewrite the expression
3abc−3abc
Collect like terms by calculating the sum or difference of their coefficients
(3−3)abc
Subtract the numbers
0×abc
Any expression multiplied by 0 equals 0
0
0−3a2b−3ac2+3a2c−3b2c+3b2a+3bc2
Solution
−3a2b−3ac2+3a2c−3b2c+3b2a+3bc2
Show Solution
