Question
Solve the inequality
Solve the inequality by testing the values in the interval
Solve the inequality by separating into cases
x∈(−∞,0)∪(0,12)
Evaluate
3(x×8)(x−12)(x×10)<0
Remove the parentheses
3x×8(x−12)x×10<0
Multiply
More Steps

Evaluate
3x×8(x−12)x×10
Multiply the terms
More Steps

Evaluate
3×8×10
Multiply the terms
24×10
Multiply the numbers
240
240x(x−12)x
Multiply the terms
240x2(x−12)
240x2(x−12)<0
Rewrite the expression
240x2(x−12)=0
Elimination the left coefficient
x2(x−12)=0
Separate the equation into 2 possible cases
x2=0x−12=0
The only way a power can be 0 is when the base equals 0
x=0x−12=0
Solve the equation
More Steps

Evaluate
x−12=0
Move the constant to the right-hand side and change its sign
x=0+12
Removing 0 doesn't change the value,so remove it from the expression
x=12
x=0x=12
Determine the test intervals using the critical values
x<00<x<12x>12
Choose a value form each interval
x1=−1x2=6x3=13
To determine if x<0 is the solution to the inequality,test if the chosen value x=−1 satisfies the initial inequality
More Steps

Evaluate
240(−1)2(−1−12)<0
Simplify
More Steps

Evaluate
240(−1)2(−1−12)
Subtract the numbers
240(−1)2(−13)
Evaluate the power
240×1×(−13)
Rewrite the expression
240(−13)
Multiplying or dividing an odd number of negative terms equals a negative
−240×13
Multiply the numbers
−3120
−3120<0
Check the inequality
true
x<0 is the solutionx2=6x3=13
To determine if 0<x<12 is the solution to the inequality,test if the chosen value x=6 satisfies the initial inequality
More Steps

Evaluate
240×62(6−12)<0
Simplify
More Steps

Evaluate
240×62(6−12)
Subtract the numbers
240×62(−6)
Rewrite the expression
−240×62×6
Multiply the terms with the same base by adding their exponents
−240×62+1
Add the numbers
−240×63
Multiply the terms
−51840
−51840<0
Check the inequality
true
x<0 is the solution0<x<12 is the solutionx3=13
To determine if x>12 is the solution to the inequality,test if the chosen value x=13 satisfies the initial inequality
More Steps

Evaluate
240×132(13−12)<0
Simplify
More Steps

Evaluate
240×132(13−12)
Subtract the numbers
240×132×1
Rewrite the expression
240×132
Evaluate the power
240×169
Multiply the numbers
40560
40560<0
Check the inequality
false
x<0 is the solution0<x<12 is the solutionx>12 is not a solution
Solution
x∈(−∞,0)∪(0,12)
Show Solution
