Question
Solve the equation(The real numbers system)
x∈/R
Alternative Form
No real solution
Evaluate
3x2=2(x−4)×18
Multiply the terms
3x2=36(x−4)
Expand the expression
More Steps

Evaluate
36(x−4)
Apply the distributive property
36x−36×4
Multiply the numbers
36x−144
3x2=36x−144
Move the expression to the left side
3x2−36x+144=0
Substitute a=3,b=−36 and c=144 into the quadratic formula x=2a−b±b2−4ac
x=2×336±(−36)2−4×3×144
Simplify the expression
x=636±(−36)2−4×3×144
Simplify the expression
More Steps

Evaluate
(−36)2−4×3×144
Multiply the terms
More Steps

Multiply the terms
4×3×144
Multiply the terms
12×144
Multiply the numbers
1728
(−36)2−1728
Rewrite the expression
362−1728
Evaluate the power
1296−1728
Subtract the numbers
−432
x=636±−432
Solution
x∈/R
Alternative Form
No real solution
Show Solution

Solve the equation(The complex numbers system)
Solve using the quadratic formula in the complex numbers system
Solve by completing the square in the complex numbers system
Solve using the PQ formula in the complex numbers system
x1=6−23×i,x2=6+23×i
Alternative Form
x1≈6−3.464102i,x2≈6+3.464102i
Evaluate
3x2=2(x−4)×18
Multiply the terms
3x2=36(x−4)
Expand the expression
More Steps

Evaluate
36(x−4)
Apply the distributive property
36x−36×4
Multiply the numbers
36x−144
3x2=36x−144
Move the expression to the left side
3x2−36x+144=0
Substitute a=3,b=−36 and c=144 into the quadratic formula x=2a−b±b2−4ac
x=2×336±(−36)2−4×3×144
Simplify the expression
x=636±(−36)2−4×3×144
Simplify the expression
More Steps

Evaluate
(−36)2−4×3×144
Multiply the terms
More Steps

Multiply the terms
4×3×144
Multiply the terms
12×144
Multiply the numbers
1728
(−36)2−1728
Rewrite the expression
362−1728
Evaluate the power
1296−1728
Subtract the numbers
−432
x=636±−432
Simplify the radical expression
More Steps

Evaluate
−432
Evaluate the power
432×−1
Evaluate the power
432×i
Evaluate the power
More Steps

Evaluate
432
Write the expression as a product where the root of one of the factors can be evaluated
144×3
Write the number in exponential form with the base of 12
122×3
The root of a product is equal to the product of the roots of each factor
122×3
Reduce the index of the radical and exponent with 2
123
123×i
x=636±123×i
Separate the equation into 2 possible cases
x=636+123×ix=636−123×i
Simplify the expression
More Steps

Evaluate
x=636+123×i
Divide the terms
More Steps

Evaluate
636+123×i
Rewrite the expression
66(6+23×i)
Reduce the fraction
6+23×i
x=6+23×i
x=6+23×ix=636−123×i
Simplify the expression
More Steps

Evaluate
x=636−123×i
Divide the terms
More Steps

Evaluate
636−123×i
Rewrite the expression
66(6−23×i)
Reduce the fraction
6−23×i
x=6−23×i
x=6+23×ix=6−23×i
Solution
x1=6−23×i,x2=6+23×i
Alternative Form
x1≈6−3.464102i,x2≈6+3.464102i
Show Solution
