Question
Simplify the expression
3x4−10x2+40x
Evaluate
3x4−2(x−4)×5x
Multiply
More Steps

Multiply the terms
2(x−4)×5x
Multiply the terms
10(x−4)x
Multiply the terms
10x(x−4)
3x4−10x(x−4)
Solution
More Steps

Evaluate
−10x(x−4)
Apply the distributive property
−10x×x−(−10x×4)
Multiply the terms
−10x2−(−10x×4)
Multiply the numbers
−10x2−(−40x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−10x2+40x
3x4−10x2+40x
Show Solution

Factor the expression
(3x3−10x+40)x
Evaluate
3x4−2(x−4)×5x
Multiply
More Steps

Evaluate
2(x−4)×5x
Multiply the terms
10(x−4)x
Multiply the terms
10x(x−4)
3x4−10x(x−4)
Rewrite the expression
3x3×x−10(x−4)x
Factor out x from the expression
(3x3−10(x−4))x
Solution
(3x3−10x+40)x
Show Solution

Find the roots
x1≈−2.834894,x2=0
Evaluate
3(x4)−2(x−4)×5x
To find the roots of the expression,set the expression equal to 0
3(x4)−2(x−4)×5x=0
Calculate
3x4−2(x−4)×5x=0
Multiply
More Steps

Multiply the terms
2(x−4)×5x
Multiply the terms
10(x−4)x
Multiply the terms
10x(x−4)
3x4−10x(x−4)=0
Calculate
More Steps

Evaluate
−10x(x−4)
Apply the distributive property
−10x×x−(−10x×4)
Multiply the terms
−10x2−(−10x×4)
Multiply the numbers
−10x2−(−40x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−10x2+40x
3x4−10x2+40x=0
Factor the expression
x(3x3−10x+40)=0
Separate the equation into 2 possible cases
x=03x3−10x+40=0
Solve the equation
x=0x≈−2.834894
Solution
x1≈−2.834894,x2=0
Show Solution
