Question
Solve the equation
x=5
Evaluate
3(x−1)=2(3x−9)
Calculate
More Steps

Evaluate
3(x−1)
Apply the distributive property
3x−3×1
Any expression multiplied by 1 remains the same
3x−3
3x−3=2(3x−9)
Calculate
More Steps

Evaluate
2(3x−9)
Apply the distributive property
2×3x−2×9
Multiply the numbers
6x−2×9
Multiply the numbers
6x−18
3x−3=6x−18
Move the expression to the left side
3x−3−(6x−18)=0
Calculate
More Steps

Add the terms
3x−3−(6x−18)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
3x−3−6x+18
Subtract the terms
More Steps

Evaluate
3x−6x
Collect like terms by calculating the sum or difference of their coefficients
(3−6)x
Subtract the numbers
−3x
−3x−3+18
Add the numbers
−3x+15
−3x+15=0
Move the constant to the right-hand side and change its sign
−3x=0−15
Removing 0 doesn't change the value,so remove it from the expression
−3x=−15
Change the signs on both sides of the equation
3x=15
Divide both sides
33x=315
Divide the numbers
x=315
Solution
More Steps

Evaluate
315
Reduce the numbers
15
Calculate
5
x=5
Show Solution

Rewrite the equation
x=5
Evaluate
3(x−1)=2(3x−9)
Multiply
More Steps

Evaluate
3(x−1)
Apply the distributive property
3x−3×1
Any expression multiplied by 1 remains the same
3x−3
3x−3=2(3x−9)
Multiply
More Steps

Evaluate
2(3x−9)
Apply the distributive property
2×3x−2×9
Multiply the numbers
6x−2×9
Multiply the numbers
6x−18
3x−3=6x−18
Move the variable to the left side
−3x−3=−18
Move the constant to the right side
−3x=−15
Multiply both sides
3x=15
Solution
x=5
Show Solution
