Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=615−21057,x2=615+21057
Alternative Form
x1≈−21.68505,x2≈26.68505
Evaluate
(3×62x−5)×4x=7
Remove the parentheses
3×62x−5×4x=7
Multiply the terms
More Steps

Evaluate
3×62x−5×4x
Multiply the terms
623(x−5)×4x
Multiply the terms
62×43(x−5)x
Multiply the terms
2483(x−5)x
2483(x−5)x=7
Rewrite the expression
2483x2−24815x=7
Move the expression to the left side
2483x2−24815x−7=0
Multiply both sides
248(2483x2−24815x−7)=248×0
Calculate
3x2−15x−1736=0
Substitute a=3,b=−15 and c=−1736 into the quadratic formula x=2a−b±b2−4ac
x=2×315±(−15)2−4×3(−1736)
Simplify the expression
x=615±(−15)2−4×3(−1736)
Simplify the expression
More Steps

Evaluate
(−15)2−4×3(−1736)
Multiply
More Steps

Multiply the terms
4×3(−1736)
Rewrite the expression
−4×3×1736
Multiply the terms
−20832
(−15)2−(−20832)
Rewrite the expression
152−(−20832)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
152+20832
Evaluate the power
225+20832
Add the numbers
21057
x=615±21057
Separate the equation into 2 possible cases
x=615+21057x=615−21057
Solution
x1=615−21057,x2=615+21057
Alternative Form
x1≈−21.68505,x2≈26.68505
Show Solution
