Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=614−110,x2=614+110
Alternative Form
x1≈0.585319,x2≈4.081348
Evaluate
3(4−x)×2(3x−2)=−5
Multiply the terms
6(4−x)(3x−2)=−5
Expand the expression
More Steps

Evaluate
6(4−x)(3x−2)
Multiply the terms
More Steps

Evaluate
6(4−x)
Apply the distributive property
6×4−6x
Multiply the numbers
24−6x
(24−6x)(3x−2)
Apply the distributive property
24×3x−24×2−6x×3x−(−6x×2)
Multiply the numbers
72x−24×2−6x×3x−(−6x×2)
Multiply the numbers
72x−48−6x×3x−(−6x×2)
Multiply the terms
More Steps

Evaluate
−6x×3x
Multiply the numbers
−18x×x
Multiply the terms
−18x2
72x−48−18x2−(−6x×2)
Multiply the numbers
72x−48−18x2−(−12x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
72x−48−18x2+12x
Add the terms
More Steps

Evaluate
72x+12x
Collect like terms by calculating the sum or difference of their coefficients
(72+12)x
Add the numbers
84x
84x−48−18x2
84x−48−18x2=−5
Move the expression to the left side
84x−43−18x2=0
Rewrite in standard form
−18x2+84x−43=0
Multiply both sides
18x2−84x+43=0
Substitute a=18,b=−84 and c=43 into the quadratic formula x=2a−b±b2−4ac
x=2×1884±(−84)2−4×18×43
Simplify the expression
x=3684±(−84)2−4×18×43
Simplify the expression
More Steps

Evaluate
(−84)2−4×18×43
Multiply the terms
More Steps

Multiply the terms
4×18×43
Multiply the terms
72×43
Multiply the numbers
3096
(−84)2−3096
Rewrite the expression
842−3096
Evaluate the power
7056−3096
Subtract the numbers
3960
x=3684±3960
Simplify the radical expression
More Steps

Evaluate
3960
Write the expression as a product where the root of one of the factors can be evaluated
36×110
Write the number in exponential form with the base of 6
62×110
The root of a product is equal to the product of the roots of each factor
62×110
Reduce the index of the radical and exponent with 2
6110
x=3684±6110
Separate the equation into 2 possible cases
x=3684+6110x=3684−6110
Simplify the expression
More Steps

Evaluate
x=3684+6110
Divide the terms
More Steps

Evaluate
3684+6110
Rewrite the expression
366(14+110)
Cancel out the common factor 6
614+110
x=614+110
x=614+110x=3684−6110
Simplify the expression
More Steps

Evaluate
x=3684−6110
Divide the terms
More Steps

Evaluate
3684−6110
Rewrite the expression
366(14−110)
Cancel out the common factor 6
614−110
x=614−110
x=614+110x=614−110
Solution
x1=614−110,x2=614+110
Alternative Form
x1≈0.585319,x2≈4.081348
Show Solution
