Question
Simplify the expression
−9x+6+3x3
Evaluate
3(x−1)(x−2)−x(3x×1)(1−x)
Remove the parentheses
3(x−1)(x−2)−x×3x×1×(1−x)
Multiply the terms
More Steps

Multiply the terms
x×3x×1×(1−x)
Rewrite the expression
x×3x(1−x)
Multiply the terms
x2×3(1−x)
Use the commutative property to reorder the terms
3x2(1−x)
3(x−1)(x−2)−3x2(1−x)
Expand the expression
More Steps

Calculate
3(x−1)(x−2)
Simplify
More Steps

Evaluate
3(x−1)
Apply the distributive property
3x−3×1
Any expression multiplied by 1 remains the same
3x−3
(3x−3)(x−2)
Apply the distributive property
3x×x−3x×2−3x−(−3×2)
Multiply the terms
3x2−3x×2−3x−(−3×2)
Multiply the numbers
3x2−6x−3x−(−3×2)
Multiply the numbers
3x2−6x−3x−(−6)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
3x2−6x−3x+6
Subtract the terms
More Steps

Evaluate
−6x−3x
Collect like terms by calculating the sum or difference of their coefficients
(−6−3)x
Subtract the numbers
−9x
3x2−9x+6
3x2−9x+6−3x2(1−x)
Expand the expression
More Steps

Calculate
−3x2(1−x)
Apply the distributive property
−3x2×1−(−3x2×x)
Any expression multiplied by 1 remains the same
−3x2−(−3x2×x)
Multiply the terms
More Steps

Evaluate
x2×x
Use the product rule an×am=an+m to simplify the expression
x2+1
Add the numbers
x3
−3x2−(−3x3)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−3x2+3x3
3x2−9x+6−3x2+3x3
The sum of two opposites equals 0
More Steps

Evaluate
3x2−3x2
Collect like terms
(3−3)x2
Add the coefficients
0×x2
Calculate
0
0−9x+6+3x3
Solution
−9x+6+3x3
Show Solution

Factor the expression
3(x−1)(−1+x)(2+x)
Evaluate
3(x−1)(x−2)−x(3x×1)(1−x)
Remove the parentheses
3(x−1)(x−2)−x×3x×1×(1−x)
Multiply the terms
3(x−1)(x−2)−x×3x(1−x)
Multiply
More Steps

Multiply the terms
x×3x(1−x)
Multiply the terms
x2×3(1−x)
Use the commutative property to reorder the terms
3x2(1−x)
3(x−1)(x−2)−3x2(1−x)
Rewrite the expression
3(x−1)(x−2)+3(x−1)x2
Factor out 3(x−1) from the expression
3(x−1)(x−2+x2)
Solution
More Steps

Evaluate
x−2+x2
Reorder the terms
−2+x+x2
Rewrite the expression
−2+(−1+2)x+x2
Calculate
−2−x+2x+x2
Rewrite the expression
−2−x+x×2+x×x
Factor out −1 from the expression
−(2+x)+x×2+x×x
Factor out x from the expression
−(2+x)+x(2+x)
Factor out 2+x from the expression
(−1+x)(2+x)
3(x−1)(−1+x)(2+x)
Show Solution

Find the roots
x1=−2,x2=1
Evaluate
3(x−1)(x−2)−x(3x×1)(1−x)
To find the roots of the expression,set the expression equal to 0
3(x−1)(x−2)−x(3x×1)(1−x)=0
Multiply the terms
3(x−1)(x−2)−x×3x(1−x)=0
Multiply
More Steps

Multiply the terms
x×3x(1−x)
Multiply the terms
x2×3(1−x)
Use the commutative property to reorder the terms
3x2(1−x)
3(x−1)(x−2)−3x2(1−x)=0
Calculate
More Steps

Evaluate
3(x−1)(x−2)−3x2(1−x)
Expand the expression
More Steps

Calculate
3(x−1)(x−2)
Simplify
(3x−3)(x−2)
Apply the distributive property
3x×x−3x×2−3x−(−3×2)
Multiply the terms
3x2−3x×2−3x−(−3×2)
Multiply the numbers
3x2−6x−3x−(−3×2)
Multiply the numbers
3x2−6x−3x−(−6)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
3x2−6x−3x+6
Subtract the terms
3x2−9x+6
3x2−9x+6−3x2(1−x)
Expand the expression
More Steps

Calculate
−3x2(1−x)
Apply the distributive property
−3x2×1−(−3x2×x)
Any expression multiplied by 1 remains the same
−3x2−(−3x2×x)
Multiply the terms
−3x2−(−3x3)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−3x2+3x3
3x2−9x+6−3x2+3x3
The sum of two opposites equals 0
More Steps

Evaluate
3x2−3x2
Collect like terms
(3−3)x2
Add the coefficients
0×x2
Calculate
0
0−9x+6+3x3
Remove 0
−9x+6+3x3
−9x+6+3x3=0
Factor the expression
3(1−x)2(2+x)=0
Divide both sides
(1−x)2(2+x)=0
Separate the equation into 2 possible cases
(1−x)2=02+x=0
Solve the equation
More Steps

Evaluate
(1−x)2=0
The only way a power can be 0 is when the base equals 0
1−x=0
Move the constant to the right-hand side and change its sign
−x=0−1
Removing 0 doesn't change the value,so remove it from the expression
−x=−1
Change the signs on both sides of the equation
x=1
x=12+x=0
Solve the equation
More Steps

Evaluate
2+x=0
Move the constant to the right side
x=0−2
Removing 0 doesn't change the value,so remove it from the expression
x=−2
x=1x=−2
Solution
x1=−2,x2=1
Show Solution
