Question
Solve the inequality
g>−11123
Alternative Form
g∈(−11123,+∞)
Evaluate
3−5(−7g−4)>9g−85g
Subtract the terms
More Steps

Evaluate
9g−85g
Collect like terms by calculating the sum or difference of their coefficients
(9−85)g
Subtract the numbers
−76g
3−5(−7g−4)>−76g
Move the expression to the left side
3−5(−7g−4)−(−76g)>0
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
3−5(−7g−4)+76g>0
Calculate the sum or difference
More Steps

Evaluate
3−5(−7g−4)+76g
Expand the expression
More Steps

Calculate
−5(−7g−4)
Apply the distributive property
−5(−7g)−(−5×4)
Multiply the numbers
35g−(−5×4)
Multiply the numbers
35g−(−20)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
35g+20
3+35g+20+76g
Add the numbers
23+35g+76g
Add the terms
More Steps

Evaluate
35g+76g
Collect like terms by calculating the sum or difference of their coefficients
(35+76)g
Add the numbers
111g
23+111g
23+111g>0
Move the constant to the right side
111g>0−23
Removing 0 doesn't change the value,so remove it from the expression
111g>−23
Divide both sides
111111g>111−23
Divide the numbers
g>111−23
Solution
g>−11123
Alternative Form
g∈(−11123,+∞)
Show Solution
