Question
Solve the equation
x=239
Alternative Form
x≈0.391304
Evaluate
3−7(1−2x)=5−(x×9)
Use the commutative property to reorder the terms
3−7(1−2x)=5−9x
Move the expression to the left side
3−7(1−2x)−(5−9x)=0
Subtract the terms
More Steps

Evaluate
3−7(1−2x)−(5−9x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
3−7(1−2x)−5+9x
Subtract the numbers
−2−7(1−2x)+9x
−2−7(1−2x)+9x=0
Calculate the sum or difference
More Steps

Evaluate
−2−7(1−2x)+9x
Expand the expression
More Steps

Calculate
−7(1−2x)
Apply the distributive property
−7×1−(−7×2x)
Any expression multiplied by 1 remains the same
−7−(−7×2x)
Multiply the numbers
−7−(−14x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−7+14x
−2−7+14x+9x
Subtract the numbers
−9+14x+9x
Add the terms
More Steps

Evaluate
14x+9x
Collect like terms by calculating the sum or difference of their coefficients
(14+9)x
Add the numbers
23x
−9+23x
−9+23x=0
Move the constant to the right-hand side and change its sign
23x=0+9
Removing 0 doesn't change the value,so remove it from the expression
23x=9
Divide both sides
2323x=239
Solution
x=239
Alternative Form
x≈0.391304
Show Solution

Rewrite the equation
23x=9
Evaluate
3−7(1−2x)=5−(x×9)
Evaluate
More Steps

Evaluate
3−7(1−2x)
Expand the expression
More Steps

Calculate
−7(1−2x)
Apply the distributive property
−7×1−(−7×2x)
Any expression multiplied by 1 remains the same
−7−(−7×2x)
Multiply the numbers
−7−(−14x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−7+14x
3−7+14x
Subtract the numbers
−4+14x
−4+14x=5−(x×9)
Use the commutative property to reorder the terms
−4+14x=5−9x
Move the variable to the left side
−4+23x=5
Solution
23x=9
Show Solution
