Question
Solve the equation
Solve for x
Solve for y
x=0x=629y
Evaluate
31x2×4=18xy
Multiply the terms
124x2=18xy
Rewrite the expression
124x2=18yx
Add or subtract both sides
124x2−18yx=0
Factor the expression
More Steps

Evaluate
124x2−18yx
Rewrite the expression
2x×62x−2x×9y
Factor out 2x from the expression
2x(62x−9y)
2x(62x−9y)=0
When the product of factors equals 0,at least one factor is 0
2x=062x−9y=0
Solve the equation for x
x=062x−9y=0
Solution
More Steps

Evaluate
62x−9y=0
Move the expression to the right-hand side and change its sign
62x=0+9y
Add the terms
62x=9y
Divide both sides
6262x=629y
Divide the numbers
x=629y
x=0x=629y
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Symmetry with respect to the origin
Evaluate
31x2×4=18xy
Multiply the terms
124x2=18xy
To test if the graph of 124x2=18xy is symmetry with respect to the origin,substitute -x for x and -y for y
124(−x)2=18(−x)(−y)
Evaluate
124x2=18(−x)(−y)
Evaluate
124x2=18xy
Solution
Symmetry with respect to the origin
Show Solution

Rewrite the equation
r=0θ={arctan(962)+kπ2π+kπ,k∈Z
Evaluate
31x2×4=18xy
Evaluate
124x2=18xy
Move the expression to the left side
124x2−18xy=0
To convert the equation to polar coordinates,substitute x for rcos(θ) and y for rsin(θ)
124(cos(θ)×r)2−18cos(θ)×rsin(θ)×r=0
Factor the expression
(124cos2(θ)−18cos(θ)sin(θ))r2=0
Simplify the expression
(124cos2(θ)−9sin(2θ))r2=0
Separate into possible cases
r2=0124cos2(θ)−9sin(2θ)=0
Evaluate
r=0124cos2(θ)−9sin(2θ)=0
Solution
More Steps

Evaluate
124cos2(θ)−9sin(2θ)=0
Rewrite the expression
124cos2(θ)−9×2sin(θ)cos(θ)=0
Simplify
124cos2(θ)−18sin(θ)cos(θ)=0
Factor the expression
More Steps

Calculate
124cos2(θ)−18sin(θ)cos(θ)
Factor out 2 from the expression
2(62cos2(θ)−9sin(θ)cos(θ))
Factor the expression
2cos(θ)(62cos(θ)−9sin(θ))
2cos(θ)(62cos(θ)−9sin(θ))=0
Elimination the left coefficient
cos(θ)(62cos(θ)−9sin(θ))=0
Separate the equation into 2 possible cases
cos(θ)=062cos(θ)−9sin(θ)=0
Solve the equation
More Steps

Evaluate
cos(θ)=0
Use the inverse trigonometric function
θ=arccos(0)
Calculate
θ=2π
Add the period of kπ,k∈Z to find all solutions
θ=2π+kπ,k∈Z
θ=2π+kπ,k∈Z62cos(θ)−9sin(θ)=0
Solve the equation
More Steps

Evaluate
62cos(θ)−9sin(θ)=0
Move the expression to the right side
−9sin(θ)=0−62cos(θ)
Subtract the terms
−9sin(θ)=−62cos(θ)
Divide both sides
cos(θ)−9sin(θ)=−62
Divide the terms
−9tan(θ)=−62
Multiply both sides of the equation by −91
−9tan(θ)(−91)=−62(−91)
Calculate
tan(θ)=−62(−91)
Calculate
tan(θ)=962
Use the inverse trigonometric function
θ=arctan(962)
Add the period of kπ,k∈Z to find all solutions
θ=arctan(962)+kπ,k∈Z
θ=2π+kπ,k∈Zθ=arctan(962)+kπ,k∈Z
Find the union
θ={arctan(962)+kπ2π+kπ,k∈Z
r=0θ={arctan(962)+kπ2π+kπ,k∈Z
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=9x124x−9y
Calculate
31x24=18xy
Simplify the expression
124x2=18xy
Take the derivative of both sides
dxd(124x2)=dxd(18xy)
Calculate the derivative
More Steps

Evaluate
dxd(124x2)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
124×dxd(x2)
Use dxdxn=nxn−1 to find derivative
124×2x
Multiply the terms
248x
248x=dxd(18xy)
Calculate the derivative
More Steps

Evaluate
dxd(18xy)
Use differentiation rules
dxd(18x)×y+18x×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(18x)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
18×dxd(x)
Use dxdxn=nxn−1 to find derivative
18×1
Any expression multiplied by 1 remains the same
18
18y+18x×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(y)
Use differentiation rules
dyd(y)×dxdy
Use dxdxn=nxn−1 to find derivative
dxdy
18y+18xdxdy
248x=18y+18xdxdy
Swap the sides of the equation
18y+18xdxdy=248x
Move the expression to the right-hand side and change its sign
18xdxdy=248x−18y
Divide both sides
18x18xdxdy=18x248x−18y
Divide the numbers
dxdy=18x248x−18y
Solution
More Steps

Evaluate
18x248x−18y
Rewrite the expression
18x2(124x−9y)
Cancel out the common factor 2
9x124x−9y
dxdy=9x124x−9y
Show Solution

Find the second derivative
Find the second derivative with respect to x
Find the second derivative with respect to y
dx2d2y=9x2−124x+18y
Calculate
31x24=18xy
Simplify the expression
124x2=18xy
Take the derivative of both sides
dxd(124x2)=dxd(18xy)
Calculate the derivative
More Steps

Evaluate
dxd(124x2)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
124×dxd(x2)
Use dxdxn=nxn−1 to find derivative
124×2x
Multiply the terms
248x
248x=dxd(18xy)
Calculate the derivative
More Steps

Evaluate
dxd(18xy)
Use differentiation rules
dxd(18x)×y+18x×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(18x)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
18×dxd(x)
Use dxdxn=nxn−1 to find derivative
18×1
Any expression multiplied by 1 remains the same
18
18y+18x×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(y)
Use differentiation rules
dyd(y)×dxdy
Use dxdxn=nxn−1 to find derivative
dxdy
18y+18xdxdy
248x=18y+18xdxdy
Swap the sides of the equation
18y+18xdxdy=248x
Move the expression to the right-hand side and change its sign
18xdxdy=248x−18y
Divide both sides
18x18xdxdy=18x248x−18y
Divide the numbers
dxdy=18x248x−18y
Divide the numbers
More Steps

Evaluate
18x248x−18y
Rewrite the expression
18x2(124x−9y)
Cancel out the common factor 2
9x124x−9y
dxdy=9x124x−9y
Take the derivative of both sides
dxd(dxdy)=dxd(9x124x−9y)
Calculate the derivative
dx2d2y=dxd(9x124x−9y)
Use differentiation rules
dx2d2y=(9x)2dxd(124x−9y)×9x−(124x−9y)×dxd(9x)
Calculate the derivative
More Steps

Evaluate
dxd(124x−9y)
Use differentiation rules
dxd(124x)+dxd(−9y)
Evaluate the derivative
124+dxd(−9y)
Evaluate the derivative
124−9dxdy
dx2d2y=(9x)2(124−9dxdy)×9x−(124x−9y)×dxd(9x)
Calculate the derivative
More Steps

Evaluate
dxd(9x)
Simplify
9×dxd(x)
Rewrite the expression
9×1
Any expression multiplied by 1 remains the same
9
dx2d2y=(9x)2(124−9dxdy)×9x−(124x−9y)×9
Calculate
More Steps

Evaluate
(124−9dxdy)×9x
Use the the distributive property to expand the expression
124×9x−9dxdy×9x
Multiply the terms
1116x−9dxdy×9x
Multiply the terms
1116x−81dxdy×x
Use the commutative property to reorder the terms
1116x−81xdxdy
dx2d2y=(9x)21116x−81xdxdy−(124x−9y)×9
Calculate
More Steps

Evaluate
(124x−9y)×9
Apply the distributive property
124x×9−9y×9
Multiply the numbers
1116x−9y×9
Multiply the numbers
1116x−81y
dx2d2y=(9x)21116x−81xdxdy−(1116x−81y)
Calculate
More Steps

Calculate
1116x−81xdxdy−(1116x−81y)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
1116x−81xdxdy−1116x+81y
The sum of two opposites equals 0
0−81xdxdy+81y
Remove 0
−81xdxdy+81y
dx2d2y=(9x)2−81xdxdy+81y
Calculate
More Steps

Evaluate
(9x)2
Evaluate the power
92x2
Evaluate the power
81x2
dx2d2y=81x2−81xdxdy+81y
Calculate
dx2d2y=x2−xdxdy+y
Use equation dxdy=9x124x−9y to substitute
dx2d2y=x2−x×9x124x−9y+y
Solution
More Steps

Calculate
x2−x×9x124x−9y+y
Multiply the terms
More Steps

Multiply the terms
−x×9x124x−9y
Cancel out the common factor x
−1×9124x−9y
Multiply the terms
−9124x−9y
x2−9124x−9y+y
Add the terms
More Steps

Evaluate
−9124x−9y+y
Reduce fractions to a common denominator
−9124x−9y+9y×9
Write all numerators above the common denominator
9−(124x−9y)+y×9
Use the commutative property to reorder the terms
9−(124x−9y)+9y
Add the terms
9−124x+18y
x29−124x+18y
Multiply by the reciprocal
9−124x+18y×x21
Multiply the terms
9x2−124x+18y
dx2d2y=9x2−124x+18y
Show Solution
