Question
Solve the equation
Solve for x
Solve for y
x=0x=321
Evaluate
32x3y2=(xy)2
To raise a product to a power,raise each factor to that power
32x3y2=x2y2
Rewrite the expression
32y2x3=y2x2
Add or subtract both sides
32y2x3−y2x2=0
Factor the expression
y2x2(32x−1)=0
Divide both sides
x2(32x−1)=0
Separate the equation into 2 possible cases
x2=032x−1=0
The only way a power can be 0 is when the base equals 0
x=032x−1=0
Solution
More Steps

Evaluate
32x−1=0
Move the constant to the right-hand side and change its sign
32x=0+1
Removing 0 doesn't change the value,so remove it from the expression
32x=1
Divide both sides
3232x=321
Divide the numbers
x=321
x=0x=321
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Not symmetry with respect to the origin
Evaluate
32x3y2=(xy)2
To raise a product to a power,raise each factor to that power
32x3y2=x2y2
To test if the graph of 32x3y2=x2y2 is symmetry with respect to the origin,substitute -x for x and -y for y
32(−x)3(−y)2=(−x)2(−y)2
Evaluate
More Steps

Evaluate
32(−x)3(−y)2
Multiply the terms
More Steps

Evaluate
32(−x)3
Rewrite the expression
32(−x3)
Multiply the numbers
−32x3
−32x3(−y)2
Multiply the terms
−32x3y2
−32x3y2=(−x)2(−y)2
Evaluate
−32x3y2=x2y2
Solution
Not symmetry with respect to the origin
Show Solution

Rewrite the equation
r=0r=32sec(θ)
Evaluate
32x3y2=(xy)2
To raise a product to a power,raise each factor to that power
32x3y2=x2y2
Move the expression to the left side
32x3y2−x2y2=0
To convert the equation to polar coordinates,substitute x for rcos(θ) and y for rsin(θ)
32(cos(θ)×r)3(sin(θ)×r)2−(cos(θ)×r)2(sin(θ)×r)2=0
Factor the expression
32cos3(θ)sin2(θ)×r5−(cos(θ)sin(θ))2r4=0
Simplify the expression
32cos3(θ)sin2(θ)×r5−41sin2(2θ)×r4=0
Factor the expression
r4(32cos3(θ)sin2(θ)×r−41sin2(2θ))=0
When the product of factors equals 0,at least one factor is 0
r4=032cos3(θ)sin2(θ)×r−41sin2(2θ)=0
Evaluate
r=032cos3(θ)sin2(θ)×r−41sin2(2θ)=0
Solution
More Steps

Factor the expression
32cos3(θ)sin2(θ)×r−41sin2(2θ)=0
Subtract the terms
32cos3(θ)sin2(θ)×r−41sin2(2θ)−(−41sin2(2θ))=0−(−41sin2(2θ))
Evaluate
32cos3(θ)sin2(θ)×r=41sin2(2θ)
Divide the terms
r=128cos3(θ)sin2(θ)sin2(2θ)
Simplify the expression
r=32sec(θ)
r=0r=32sec(θ)
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=32x2−xy−48yx
Calculate
32x3y2=(xy)2
Simplify the expression
32x3y2=x2y2
Take the derivative of both sides
dxd(32x3y2)=dxd(x2y2)
Calculate the derivative
More Steps

Evaluate
dxd(32x3y2)
Use differentiation rules
dxd(32x3)×y2+32x3×dxd(y2)
Evaluate the derivative
More Steps

Evaluate
dxd(32x3)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
32×dxd(x3)
Use dxdxn=nxn−1 to find derivative
32×3x2
Multiply the terms
96x2
96x2y2+32x3×dxd(y2)
Evaluate the derivative
More Steps

Evaluate
dxd(y2)
Use differentiation rules
dyd(y2)×dxdy
Use dxdxn=nxn−1 to find derivative
2ydxdy
96x2y2+64x3ydxdy
96x2y2+64x3ydxdy=dxd(x2y2)
Calculate the derivative
More Steps

Evaluate
dxd(x2y2)
Use differentiation rules
dxd(x2)×y2+x2×dxd(y2)
Use dxdxn=nxn−1 to find derivative
2xy2+x2×dxd(y2)
Evaluate the derivative
More Steps

Evaluate
dxd(y2)
Use differentiation rules
dyd(y2)×dxdy
Use dxdxn=nxn−1 to find derivative
2ydxdy
2xy2+2x2ydxdy
96x2y2+64x3ydxdy=2xy2+2x2ydxdy
Move the expression to the left side
96x2y2+64x3ydxdy−2x2ydxdy=2xy2
Move the expression to the right side
64x3ydxdy−2x2ydxdy=2xy2−96x2y2
Collect like terms by calculating the sum or difference of their coefficients
(64x3y−2x2y)dxdy=2xy2−96x2y2
Divide both sides
64x3y−2x2y(64x3y−2x2y)dxdy=64x3y−2x2y2xy2−96x2y2
Divide the numbers
dxdy=64x3y−2x2y2xy2−96x2y2
Solution
More Steps

Evaluate
64x3y−2x2y2xy2−96x2y2
Rewrite the expression
64x3y−2x2y2xy(y−48yx)
Rewrite the expression
2xy(32x2−x)2xy(y−48yx)
Reduce the fraction
32x2−xy−48yx
dxdy=32x2−xy−48yx
Show Solution

Find the second derivative
Find the second derivative with respect to x
Find the second derivative with respect to y
dx2d2y=1024x4−64x3+x2−160yx+3840yx2+2y
Calculate
32x3y2=(xy)2
Simplify the expression
32x3y2=x2y2
Take the derivative of both sides
dxd(32x3y2)=dxd(x2y2)
Calculate the derivative
More Steps

Evaluate
dxd(32x3y2)
Use differentiation rules
dxd(32x3)×y2+32x3×dxd(y2)
Evaluate the derivative
More Steps

Evaluate
dxd(32x3)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
32×dxd(x3)
Use dxdxn=nxn−1 to find derivative
32×3x2
Multiply the terms
96x2
96x2y2+32x3×dxd(y2)
Evaluate the derivative
More Steps

Evaluate
dxd(y2)
Use differentiation rules
dyd(y2)×dxdy
Use dxdxn=nxn−1 to find derivative
2ydxdy
96x2y2+64x3ydxdy
96x2y2+64x3ydxdy=dxd(x2y2)
Calculate the derivative
More Steps

Evaluate
dxd(x2y2)
Use differentiation rules
dxd(x2)×y2+x2×dxd(y2)
Use dxdxn=nxn−1 to find derivative
2xy2+x2×dxd(y2)
Evaluate the derivative
More Steps

Evaluate
dxd(y2)
Use differentiation rules
dyd(y2)×dxdy
Use dxdxn=nxn−1 to find derivative
2ydxdy
2xy2+2x2ydxdy
96x2y2+64x3ydxdy=2xy2+2x2ydxdy
Move the expression to the left side
96x2y2+64x3ydxdy−2x2ydxdy=2xy2
Move the expression to the right side
64x3ydxdy−2x2ydxdy=2xy2−96x2y2
Collect like terms by calculating the sum or difference of their coefficients
(64x3y−2x2y)dxdy=2xy2−96x2y2
Divide both sides
64x3y−2x2y(64x3y−2x2y)dxdy=64x3y−2x2y2xy2−96x2y2
Divide the numbers
dxdy=64x3y−2x2y2xy2−96x2y2
Divide the numbers
More Steps

Evaluate
64x3y−2x2y2xy2−96x2y2
Rewrite the expression
64x3y−2x2y2xy(y−48yx)
Rewrite the expression
2xy(32x2−x)2xy(y−48yx)
Reduce the fraction
32x2−xy−48yx
dxdy=32x2−xy−48yx
Take the derivative of both sides
dxd(dxdy)=dxd(32x2−xy−48yx)
Calculate the derivative
dx2d2y=dxd(32x2−xy−48yx)
Use differentiation rules
dx2d2y=(32x2−x)2dxd(y−48yx)×(32x2−x)−(y−48yx)×dxd(32x2−x)
Calculate the derivative
More Steps

Evaluate
dxd(y−48yx)
Use differentiation rules
dxd(y)+dxd(−48yx)
Evaluate the derivative
dxdy+dxd(−48yx)
Evaluate the derivative
dxdy−48y−48xdxdy
dx2d2y=(32x2−x)2(dxdy−48y−48xdxdy)(32x2−x)−(y−48yx)×dxd(32x2−x)
Calculate the derivative
More Steps

Evaluate
dxd(32x2−x)
Use differentiation rules
dxd(32x2)+dxd(−x)
Evaluate the derivative
64x+dxd(−x)
Evaluate the derivative
64x−1
dx2d2y=(32x2−x)2(dxdy−48y−48xdxdy)(32x2−x)−(y−48yx)(64x−1)
Calculate
More Steps

Evaluate
(dxdy−48y−48xdxdy)(32x2−x)
Use the the distributive property to expand the expression
dxdy×(32x2−x)+(−48y−48xdxdy)(32x2−x)
Multiply the terms
32x2dxdy−xdxdy+(−48y−48xdxdy)(32x2−x)
Multiply the terms
32x2dxdy−xdxdy−1536yx2+48yx−1536x3dxdy+48x2dxdy
Calculate
80x2dxdy−xdxdy−1536yx2+48yx−1536x3dxdy
dx2d2y=(32x2−x)280x2dxdy−xdxdy−1536yx2+48yx−1536x3dxdy−(y−48yx)(64x−1)
Calculate
More Steps

Evaluate
(y−48yx)(64x−1)
Use the the distributive property to expand the expression
(y−48yx)×64x+(y−48yx)(−1)
Multiply the terms
64yx−3072yx2+(y−48yx)(−1)
Multiply the terms
64yx−3072yx2−y+48yx
Calculate
112yx−3072yx2−y
dx2d2y=(32x2−x)280x2dxdy−xdxdy−1536yx2+48yx−1536x3dxdy−(112yx−3072yx2−y)
Calculate
More Steps

Calculate
80x2dxdy−xdxdy−1536yx2+48yx−1536x3dxdy−(112yx−3072yx2−y)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
80x2dxdy−xdxdy−1536yx2+48yx−1536x3dxdy−112yx+3072yx2+y
Add the terms
80x2dxdy−xdxdy+1536yx2+48yx−1536x3dxdy−112yx+y
Subtract the terms
80x2dxdy−xdxdy+1536yx2−64yx−1536x3dxdy+y
dx2d2y=(32x2−x)280x2dxdy−xdxdy+1536yx2−64yx−1536x3dxdy+y
Use equation dxdy=32x2−xy−48yx to substitute
dx2d2y=(32x2−x)280x2×32x2−xy−48yx−x×32x2−xy−48yx+1536yx2−64yx−1536x3×32x2−xy−48yx+y
Solution
More Steps

Calculate
(32x2−x)280x2×32x2−xy−48yx−x×32x2−xy−48yx+1536yx2−64yx−1536x3×32x2−xy−48yx+y
Multiply the terms
More Steps

Multiply the terms
80x2×32x2−xy−48yx
Rewrite the expression
80x2×x(32x−1)y−48yx
Cancel out the common factor x
80x×32x−1y−48yx
Multiply the terms
32x−180x(y−48yx)
(32x2−x)232x−180x(y−48yx)−x×32x2−xy−48yx+1536yx2−64yx−1536x3×32x2−xy−48yx+y
Multiply the terms
More Steps

Multiply the terms
−x×32x2−xy−48yx
Rewrite the expression
−x×x(32x−1)y−48yx
Cancel out the common factor x
−1×32x−1y−48yx
Multiply the terms
−32x−1y−48yx
(32x2−x)232x−180x(y−48yx)−32x−1y−48yx+1536yx2−64yx−1536x3×32x2−xy−48yx+y
Multiply the terms
(32x2−x)232x−180x(y−48yx)−32x−1y−48yx+1536yx2−64yx−32x−11536x2(y−48yx)+y
Calculate the sum or difference
More Steps

Evaluate
32x−180x(y−48yx)−32x−1y−48yx+1536yx2−64yx−32x−11536x2(y−48yx)+y
Reduce fractions to a common denominator
32x−180x(y−48yx)−32x−1y−48yx+32x−11536yx2(32x−1)−32x−164yx(32x−1)−32x−11536x2(y−48yx)+32x−1y(32x−1)
Write all numerators above the common denominator
32x−180x(y−48yx)−(y−48yx)+1536yx2(32x−1)−64yx(32x−1)−1536x2(y−48yx)+y(32x−1)
Multiply the terms
32x−180yx−3840yx2−(y−48yx)+1536yx2(32x−1)−64yx(32x−1)−1536x2(y−48yx)+y(32x−1)
Multiply the terms
32x−180yx−3840yx2−(y−48yx)+49152x3y−1536yx2−64yx(32x−1)−1536x2(y−48yx)+y(32x−1)
Multiply the terms
32x−180yx−3840yx2−(y−48yx)+49152x3y−1536yx2−(2048x2y−64yx)−1536x2(y−48yx)+y(32x−1)
Multiply the terms
32x−180yx−3840yx2−(y−48yx)+49152x3y−1536yx2−(2048x2y−64yx)−(1536yx2−73728yx3)+y(32x−1)
Multiply the terms
32x−180yx−3840yx2−(y−48yx)+49152x3y−1536yx2−(2048x2y−64yx)−(1536yx2−73728yx3)+32yx−y
Calculate the sum or difference
32x−1224yx−8960yx2−2y+122880x3y
Factor the expression
32x−1(32x−1)(−160yx+3840yx2+2y)
Reduce the fraction
−160yx+3840yx2+2y
(32x2−x)2−160yx+3840yx2+2y
Expand the expression
More Steps

Evaluate
(32x2−x)2
Use (a−b)2=a2−2ab+b2 to expand the expression
(32x2)2−2×32x2×x+x2
Calculate
1024x4−64x3+x2
1024x4−64x3+x2−160yx+3840yx2+2y
dx2d2y=1024x4−64x3+x2−160yx+3840yx2+2y
Show Solution
