Question
Simplify the expression
32−256x+128x2−16x3
Evaluate
32−8x(8−2x)(4−x)
Solution
More Steps

Calculate
−8x(8−2x)(4−x)
Simplify
More Steps

Evaluate
−8x(8−2x)
Apply the distributive property
−8x×8−(−8x×2x)
Multiply the numbers
−64x−(−8x×2x)
Multiply the terms
−64x−(−16x2)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−64x+16x2
(−64x+16x2)(4−x)
Apply the distributive property
−64x×4−(−64x×x)+16x2×4−16x2×x
Multiply the numbers
−256x−(−64x×x)+16x2×4−16x2×x
Multiply the terms
−256x−(−64x2)+16x2×4−16x2×x
Multiply the numbers
−256x−(−64x2)+64x2−16x2×x
Multiply the terms
More Steps

Evaluate
x2×x
Use the product rule an×am=an+m to simplify the expression
x2+1
Add the numbers
x3
−256x−(−64x2)+64x2−16x3
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−256x+64x2+64x2−16x3
Add the terms
More Steps

Evaluate
64x2+64x2
Collect like terms by calculating the sum or difference of their coefficients
(64+64)x2
Add the numbers
128x2
−256x+128x2−16x3
32−256x+128x2−16x3
Show Solution

Factor the expression
16(2−16x+8x2−x3)
Evaluate
32−8x(8−2x)(4−x)
Simplify
More Steps

Evaluate
−8x(8−2x)(4−x)
Simplify
More Steps

Evaluate
−8x(8−2x)
Apply the distributive property
−8x×8−8x(−2x)
Multiply the terms
−64x−8x(−2x)
Multiply the terms
−64x+16x2
(−64x+16x2)(4−x)
Apply the distributive property
−64x×4−64x(−x)+16x2×4+16x2(−x)
Multiply the terms
−256x−64x(−x)+16x2×4+16x2(−x)
Multiply the terms
More Steps

Evaluate
−64x(−x)
Multiply the numbers
64x×x
Multiply the terms
64x2
−256x+64x2+16x2×4+16x2(−x)
Multiply the terms
−256x+64x2+64x2+16x2(−x)
Multiply the terms
More Steps

Evaluate
16x2(−x)
Multiply the numbers
−16x2×x
Multiply the terms
−16x3
−256x+64x2+64x2−16x3
32−256x+64x2+64x2−16x3
Add the terms
More Steps

Evaluate
64x2+64x2
Collect like terms by calculating the sum or difference of their coefficients
(64+64)x2
Add the numbers
128x2
32−256x+128x2−16x3
Solution
16(2−16x+8x2−x3)
Show Solution

Find the roots
x1≈0.133802,x2≈3.210756,x3≈4.655442
Evaluate
32−8x(8−2x)(4−x)
To find the roots of the expression,set the expression equal to 0
32−8x(8−2x)(4−x)=0
Calculate
More Steps

Calculate
−8x(8−2x)(4−x)
Simplify
More Steps

Evaluate
−8x(8−2x)
Apply the distributive property
−8x×8−(−8x×2x)
Multiply the numbers
−64x−(−8x×2x)
Multiply the terms
−64x−(−16x2)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−64x+16x2
(−64x+16x2)(4−x)
Apply the distributive property
−64x×4−(−64x×x)+16x2×4−16x2×x
Multiply the numbers
−256x−(−64x×x)+16x2×4−16x2×x
Multiply the terms
−256x−(−64x2)+16x2×4−16x2×x
Multiply the numbers
−256x−(−64x2)+64x2−16x2×x
Multiply the terms
More Steps

Evaluate
x2×x
Use the product rule an×am=an+m to simplify the expression
x2+1
Add the numbers
x3
−256x−(−64x2)+64x2−16x3
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−256x+64x2+64x2−16x3
Add the terms
More Steps

Evaluate
64x2+64x2
Collect like terms by calculating the sum or difference of their coefficients
(64+64)x2
Add the numbers
128x2
−256x+128x2−16x3
32−256x+128x2−16x3=0
Factor the expression
16(2−16x+8x2−x3)=0
Divide both sides
2−16x+8x2−x3=0
Calculate
x≈0.133802x≈3.210756x≈4.655442
Solution
x1≈0.133802,x2≈3.210756,x3≈4.655442
Show Solution
