Question Simplify the expression 11322x3+21978x2 Evaluate 333x3×34+999x2×22Multiply the terms 11322x3+999x2×22Solution 11322x3+21978x2 Show Solution Factor the expression 666x2(17x+33) Evaluate 333x3×34+999x2×22Multiply the terms 11322x3+999x2×22Multiply the terms 11322x3+21978x2Rewrite the expression 666x2×17x+666x2×33Solution 666x2(17x+33) Show Solution Find the roots x1=−1733,x2=0Alternative Form x1≈−1.941176,x2=0 Evaluate 333x3×34+999x2×22To find the roots of the expression,set the expression equal to 0 333x3×34+999x2×22=0Multiply the terms 11322x3+999x2×22=0Multiply the terms 11322x3+21978x2=0Factor the expression 666x2(17x+33)=0Divide both sides x2(17x+33)=0Separate the equation into 2 possible cases x2=017x+33=0The only way a power can be 0 is when the base equals 0 x=017x+33=0Solve the equation More Steps Evaluate 17x+33=0Move the constant to the right-hand side and change its sign 17x=0−33Removing 0 doesn't change the value,so remove it from the expression 17x=−33Divide both sides 1717x=17−33Divide the numbers x=17−33Use b−a=−ba=−ba to rewrite the fraction x=−1733 x=0x=−1733Solution x1=−1733,x2=0Alternative Form x1≈−1.941176,x2=0 Show Solution