Question Simplify the expression 8800s567 Evaluate 25335÷(22s5×80)Cancel out the common factor 5 567÷(22s5×80)Multiply the terms 567÷1760s5Multiply by the reciprocal 567×1760s51Multiply the terms 5×1760s567Solution 8800s567 Show Solution Find the excluded values s=0 Evaluate 25335÷(22s5×80)To find the excluded values,set the denominators equal to 0 22s5×80=0Multiply the terms 1760s5=0Rewrite the expression s5=0Solution s=0 Show Solution Find the roots s∈∅ Evaluate 25335÷(22s5×80)To find the roots of the expression,set the expression equal to 0 25335÷(22s5×80)=0Find the domain More Steps Evaluate 22s5×80=0Multiply the terms 1760s5=0Rewrite the expression s5=0The only way a power can not be 0 is when the base not equals 0 s=0 25335÷(22s5×80)=0,s=0Calculate 25335÷(22s5×80)=0Cancel out the common factor 5 567÷(22s5×80)=0Multiply the terms 567÷1760s5=0Divide the terms More Steps Evaluate 567÷1760s5Multiply by the reciprocal 567×1760s51Multiply the terms 5×1760s567Multiply the terms 8800s567 8800s567=0Cross multiply 67=8800s5×0Simplify the equation 67=0Solution s∈∅ Show Solution