Question
Solve the equation
Solve for x
Solve for y
x=1505y228
Evaluate
35x×86y=456
Multiply the terms
3010xy=456
Rewrite the expression
3010yx=456
Divide both sides
3010y3010yx=3010y456
Divide the numbers
x=3010y456
Solution
x=1505y228
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Symmetry with respect to the origin
Evaluate
35x×86y=456
Multiply the terms
3010xy=456
To test if the graph of 3010xy=456 is symmetry with respect to the origin,substitute -x for x and -y for y
3010(−x)(−y)=456
Evaluate
3010xy=456
Solution
Symmetry with respect to the origin
Show Solution

Rewrite the equation
r=1505∣sin(2θ)∣2171570sin(2θ)r=−1505∣sin(2θ)∣2171570sin(2θ)
Evaluate
35x×86y=456
Evaluate
3010xy=456
To convert the equation to polar coordinates,substitute x for rcos(θ) and y for rsin(θ)
3010cos(θ)×rsin(θ)×r=456
Factor the expression
3010cos(θ)sin(θ)×r2=456
Simplify the expression
1505sin(2θ)×r2=456
Divide the terms
r2=1505sin(2θ)456
Evaluate the power
r=±1505sin(2θ)456
Simplify the expression
More Steps

Evaluate
1505sin(2θ)456
To take a root of a fraction,take the root of the numerator and denominator separately
1505sin(2θ)456
Simplify the radical expression
More Steps

Evaluate
456
Write the expression as a product where the root of one of the factors can be evaluated
4×114
Write the number in exponential form with the base of 2
22×114
The root of a product is equal to the product of the roots of each factor
22×114
Reduce the index of the radical and exponent with 2
2114
1505sin(2θ)2114
Multiply by the Conjugate
1505sin(2θ)×1505sin(2θ)2114×1505sin(2θ)
Calculate
1505∣sin(2θ)∣2114×1505sin(2θ)
Calculate the product
More Steps

Evaluate
114×1505sin(2θ)
The product of roots with the same index is equal to the root of the product
114×1505sin(2θ)
Calculate the product
171570sin(2θ)
1505∣sin(2θ)∣2171570sin(2θ)
r=±1505∣sin(2θ)∣2171570sin(2θ)
Solution
r=1505∣sin(2θ)∣2171570sin(2θ)r=−1505∣sin(2θ)∣2171570sin(2θ)
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=−xy
Calculate
35x86y=456
Simplify the expression
3010xy=456
Take the derivative of both sides
dxd(3010xy)=dxd(456)
Calculate the derivative
More Steps

Evaluate
dxd(3010xy)
Use differentiation rules
dxd(3010x)×y+3010x×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(3010x)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
3010×dxd(x)
Use dxdxn=nxn−1 to find derivative
3010×1
Any expression multiplied by 1 remains the same
3010
3010y+3010x×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(y)
Use differentiation rules
dyd(y)×dxdy
Use dxdxn=nxn−1 to find derivative
dxdy
3010y+3010xdxdy
3010y+3010xdxdy=dxd(456)
Calculate the derivative
3010y+3010xdxdy=0
Move the expression to the right-hand side and change its sign
3010xdxdy=0−3010y
Removing 0 doesn't change the value,so remove it from the expression
3010xdxdy=−3010y
Divide both sides
3010x3010xdxdy=3010x−3010y
Divide the numbers
dxdy=3010x−3010y
Solution
More Steps

Evaluate
3010x−3010y
Cancel out the common factor 3010
x−y
Use b−a=−ba=−ba to rewrite the fraction
−xy
dxdy=−xy
Show Solution

Find the second derivative
Find the second derivative with respect to x
Find the second derivative with respect to y
dx2d2y=x22y
Calculate
35x86y=456
Simplify the expression
3010xy=456
Take the derivative of both sides
dxd(3010xy)=dxd(456)
Calculate the derivative
More Steps

Evaluate
dxd(3010xy)
Use differentiation rules
dxd(3010x)×y+3010x×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(3010x)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
3010×dxd(x)
Use dxdxn=nxn−1 to find derivative
3010×1
Any expression multiplied by 1 remains the same
3010
3010y+3010x×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(y)
Use differentiation rules
dyd(y)×dxdy
Use dxdxn=nxn−1 to find derivative
dxdy
3010y+3010xdxdy
3010y+3010xdxdy=dxd(456)
Calculate the derivative
3010y+3010xdxdy=0
Move the expression to the right-hand side and change its sign
3010xdxdy=0−3010y
Removing 0 doesn't change the value,so remove it from the expression
3010xdxdy=−3010y
Divide both sides
3010x3010xdxdy=3010x−3010y
Divide the numbers
dxdy=3010x−3010y
Divide the numbers
More Steps

Evaluate
3010x−3010y
Cancel out the common factor 3010
x−y
Use b−a=−ba=−ba to rewrite the fraction
−xy
dxdy=−xy
Take the derivative of both sides
dxd(dxdy)=dxd(−xy)
Calculate the derivative
dx2d2y=dxd(−xy)
Use differentiation rules
dx2d2y=−x2dxd(y)×x−y×dxd(x)
Calculate the derivative
More Steps

Evaluate
dxd(y)
Use differentiation rules
dyd(y)×dxdy
Use dxdxn=nxn−1 to find derivative
dxdy
dx2d2y=−x2dxdy×x−y×dxd(x)
Use dxdxn=nxn−1 to find derivative
dx2d2y=−x2dxdy×x−y×1
Use the commutative property to reorder the terms
dx2d2y=−x2xdxdy−y×1
Any expression multiplied by 1 remains the same
dx2d2y=−x2xdxdy−y
Use equation dxdy=−xy to substitute
dx2d2y=−x2x(−xy)−y
Solution
More Steps

Calculate
−x2x(−xy)−y
Multiply the terms
More Steps

Evaluate
x(−xy)
Multiplying or dividing an odd number of negative terms equals a negative
−x×xy
Cancel out the common factor x
−1×y
Multiply the terms
−y
−x2−y−y
Subtract the terms
More Steps

Simplify
−y−y
Collect like terms by calculating the sum or difference of their coefficients
(−1−1)y
Subtract the numbers
−2y
−x2−2y
Divide the terms
−(−x22y)
Calculate
x22y
dx2d2y=x22y
Show Solution

Conic
1505456(x′)2−1505456(y′)2=1
Evaluate
35x×86y=456
Move the expression to the left side
35x×86y−456=0
Calculate
3010xy−456=0
The coefficients A,B and C of the general equation are A=0,B=3010 and C=0
A=0B=3010C=0
To find the angle of rotation θ,substitute the values of A,B and C into the formula cot(2θ)=BA−C
cot(2θ)=30100−0
Calculate
cot(2θ)=0
Using the unit circle,find the smallest positive angle for which the cotangent is 0
2θ=2π
Calculate
θ=4π
To rotate the axes,use the equation of rotation and substitute 4π for θ
x=x′cos(4π)−y′sin(4π)y=x′sin(4π)+y′cos(4π)
Calculate
x=x′×22−y′sin(4π)y=x′sin(4π)+y′cos(4π)
Calculate
x=x′×22−y′×22y=x′sin(4π)+y′cos(4π)
Calculate
x=x′×22−y′×22y=x′×22+y′cos(4π)
Calculate
x=x′×22−y′×22y=x′×22+y′×22
Substitute x and y into the original equation 3010xy−456=0
3010(x′×22−y′×22)(x′×22+y′×22)−456=0
Calculate
More Steps

Calculate
3010(x′×22−y′×22)(x′×22+y′×22)−456
Use the commutative property to reorder the terms
3010(22x′−y′×22)(x′×22+y′×22)−456
Use the commutative property to reorder the terms
3010(22x′−22y′)(x′×22+y′×22)−456
Use the commutative property to reorder the terms
3010(22x′−22y′)(22x′+y′×22)−456
Use the commutative property to reorder the terms
3010(22x′−22y′)(22x′+22y′)−456
Expand the expression
More Steps

Calculate
3010(22x′−22y′)(22x′+22y′)
Simplify
(15052×x′−15052×y′)(22x′+22y′)
Apply the distributive property
15052×x′×22x′+15052×x′×22y′−15052×y′×22x′−15052×y′×22y′
Multiply the terms
1505(x′)2+15052×x′×22y′−15052×y′×22x′−15052×y′×22y′
Multiply the numbers
1505(x′)2+1505x′y′−15052×y′×22x′−15052×y′×22y′
Multiply the numbers
1505(x′)2+1505x′y′−1505y′x′−15052×y′×22y′
Multiply the terms
1505(x′)2+1505x′y′−1505y′x′−1505(y′)2
Subtract the terms
1505(x′)2+0−1505(y′)2
Removing 0 doesn't change the value,so remove it from the expression
1505(x′)2−1505(y′)2
1505(x′)2−1505(y′)2−456
1505(x′)2−1505(y′)2−456=0
Move the constant to the right-hand side and change its sign
1505(x′)2−1505(y′)2=0−(−456)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
1505(x′)2−1505(y′)2=0+456
Removing 0 doesn't change the value,so remove it from the expression
1505(x′)2−1505(y′)2=456
Multiply both sides of the equation by 4561
(1505(x′)2−1505(y′)2)×4561=456×4561
Multiply the terms
More Steps

Evaluate
(1505(x′)2−1505(y′)2)×4561
Use the the distributive property to expand the expression
1505(x′)2×4561−1505(y′)2×4561
Multiply the numbers
4561505(x′)2−1505(y′)2×4561
Multiply the numbers
4561505(x′)2−4561505(y′)2
4561505(x′)2−4561505(y′)2=456×4561
Multiply the terms
More Steps

Evaluate
456×4561
Reduce the numbers
1×1
Simplify
1
4561505(x′)2−4561505(y′)2=1
Use a=a11 to transform the expression
1505456(x′)2−4561505(y′)2=1
Solution
1505456(x′)2−1505456(y′)2=1
Show Solution
