Question Simplify the expression 105x2+245x3 Evaluate 35x2×3+35x3×7Multiply the terms 105x2+35x3×7Solution 105x2+245x3 Show Solution Factor the expression 35x2(3+7x) Evaluate 35x2×3+35x3×7Multiply the terms 105x2+35x3×7Multiply the terms 105x2+245x3Rewrite the expression 35x2×3+35x2×7xSolution 35x2(3+7x) Show Solution Find the roots x1=−73,x2=0Alternative Form x1=−0.4˙28571˙,x2=0 Evaluate 35x2×3+35x3×7To find the roots of the expression,set the expression equal to 0 35x2×3+35x3×7=0Multiply the terms 105x2+35x3×7=0Multiply the terms 105x2+245x3=0Factor the expression 35x2(3+7x)=0Divide both sides x2(3+7x)=0Separate the equation into 2 possible cases x2=03+7x=0The only way a power can be 0 is when the base equals 0 x=03+7x=0Solve the equation More Steps Evaluate 3+7x=0Move the constant to the right-hand side and change its sign 7x=0−3Removing 0 doesn't change the value,so remove it from the expression 7x=−3Divide both sides 77x=7−3Divide the numbers x=7−3Use b−a=−ba=−ba to rewrite the fraction x=−73 x=0x=−73Solution x1=−73,x2=0Alternative Form x1=−0.4˙28571˙,x2=0 Show Solution