Question
Simplify the expression
595x+415x3
Evaluate
35x×17+83x3×5
Multiply the terms
595x+83x3×5
Solution
595x+415x3
Show Solution

Factor the expression
5x(119+83x2)
Evaluate
35x×17+83x3×5
Multiply the terms
595x+83x3×5
Multiply the terms
595x+415x3
Rewrite the expression
5x×119+5x×83x2
Solution
5x(119+83x2)
Show Solution

Find the roots
x1=−839877i,x2=839877i,x3=0
Alternative Form
x1≈−1.197387i,x2≈1.197387i,x3=0
Evaluate
35x×17+83x3×5
To find the roots of the expression,set the expression equal to 0
35x×17+83x3×5=0
Multiply the terms
595x+83x3×5=0
Multiply the terms
595x+415x3=0
Factor the expression
5x(119+83x2)=0
Divide both sides
x(119+83x2)=0
Separate the equation into 2 possible cases
x=0119+83x2=0
Solve the equation
More Steps

Evaluate
119+83x2=0
Move the constant to the right-hand side and change its sign
83x2=0−119
Removing 0 doesn't change the value,so remove it from the expression
83x2=−119
Divide both sides
8383x2=83−119
Divide the numbers
x2=83−119
Use b−a=−ba=−ba to rewrite the fraction
x2=−83119
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±−83119
Simplify the expression
More Steps

Evaluate
−83119
Evaluate the power
83119×−1
Evaluate the power
83119×i
Evaluate the power
839877i
x=±839877i
Separate the equation into 2 possible cases
x=839877ix=−839877i
x=0x=839877ix=−839877i
Solution
x1=−839877i,x2=839877i,x3=0
Alternative Form
x1≈−1.197387i,x2≈1.197387i,x3=0
Show Solution
