Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
k1=188−757,k2=188+757
Alternative Form
k1≈−1.084091,k2≈1.97298
Evaluate
36k2−32k−77=0
Substitute a=36,b=−32 and c=−77 into the quadratic formula k=2a−b±b2−4ac
k=2×3632±(−32)2−4×36(−77)
Simplify the expression
k=7232±(−32)2−4×36(−77)
Simplify the expression
More Steps

Evaluate
(−32)2−4×36(−77)
Multiply
More Steps

Multiply the terms
4×36(−77)
Rewrite the expression
−4×36×77
Multiply the terms
−11088
(−32)2−(−11088)
Rewrite the expression
322−(−11088)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
322+11088
Evaluate the power
1024+11088
Add the numbers
12112
k=7232±12112
Simplify the radical expression
More Steps

Evaluate
12112
Write the expression as a product where the root of one of the factors can be evaluated
16×757
Write the number in exponential form with the base of 4
42×757
The root of a product is equal to the product of the roots of each factor
42×757
Reduce the index of the radical and exponent with 2
4757
k=7232±4757
Separate the equation into 2 possible cases
k=7232+4757k=7232−4757
Simplify the expression
More Steps

Evaluate
k=7232+4757
Divide the terms
More Steps

Evaluate
7232+4757
Rewrite the expression
724(8+757)
Cancel out the common factor 4
188+757
k=188+757
k=188+757k=7232−4757
Simplify the expression
More Steps

Evaluate
k=7232−4757
Divide the terms
More Steps

Evaluate
7232−4757
Rewrite the expression
724(8−757)
Cancel out the common factor 4
188−757
k=188−757
k=188+757k=188−757
Solution
k1=188−757,k2=188+757
Alternative Form
k1≈−1.084091,k2≈1.97298
Show Solution
