Question
Simplify the expression
375y8+525y7−735y6−1029y5
Evaluate
39y3×2650y2−98×y2(5y+7)
Divide the terms
More Steps

Evaluate
2650y2−98
Factor
262(25y2−49)
Reduce the fraction
1325y2−49
39y3×1325y2−49×y2(5y+7)
Multiply the terms with the same base by adding their exponents
39y3+2×1325y2−49×(5y+7)
Add the numbers
39y5×1325y2−49×(5y+7)
Cancel out the common factor 13
3y5(25y2−49)(5y+7)
Multiply the terms
More Steps

Evaluate
3y5(25y2−49)
Apply the distributive property
3y5×25y2−3y5×49
Multiply the terms
More Steps

Evaluate
3y5×25y2
Multiply the numbers
75y5×y2
Multiply the terms
75y7
75y7−3y5×49
Multiply the numbers
75y7−147y5
(75y7−147y5)(5y+7)
Apply the distributive property
75y7×5y+75y7×7−147y5×5y−147y5×7
Multiply the terms
More Steps

Evaluate
75y7×5y
Multiply the numbers
375y7×y
Multiply the terms
More Steps

Evaluate
y7×y
Use the product rule an×am=an+m to simplify the expression
y7+1
Add the numbers
y8
375y8
375y8+75y7×7−147y5×5y−147y5×7
Multiply the numbers
375y8+525y7−147y5×5y−147y5×7
Multiply the terms
More Steps

Evaluate
−147y5×5y
Multiply the numbers
−735y5×y
Multiply the terms
More Steps

Evaluate
y5×y
Use the product rule an×am=an+m to simplify the expression
y5+1
Add the numbers
y6
−735y6
375y8+525y7−735y6−147y5×7
Solution
375y8+525y7−735y6−1029y5
Show Solution

Factor the expression
3y5(5y−7)(5y+7)2
Evaluate
39y3×2650y2−98×y2(5y+7)
Divide the terms
More Steps

Evaluate
2650y2−98
Factor
262(25y2−49)
Reduce the fraction
1325y2−49
39y3×1325y2−49×y2(5y+7)
Multiply the terms with the same base by adding their exponents
39y3+2×1325y2−49×(5y+7)
Add the numbers
39y5×1325y2−49×(5y+7)
Cancel out the common factor 13
3y5(25y2−49)(5y+7)
Use a2−b2=(a−b)(a+b) to factor the expression
3y5(5y−7)(5y+7)(5y+7)
Solution
3y5(5y−7)(5y+7)2
Show Solution

Find the roots
y1=−57,y2=0,y3=57
Alternative Form
y1=−1.4,y2=0,y3=1.4
Evaluate
39y3×2650y2−98×y2(5y+7)
To find the roots of the expression,set the expression equal to 0
39y3×2650y2−98×y2(5y+7)=0
Divide the terms
More Steps

Evaluate
2650y2−98
Factor
262(25y2−49)
Reduce the fraction
1325y2−49
39y3×1325y2−49×y2(5y+7)=0
Multiply
More Steps

Multiply the terms
39y3×1325y2−49×y2(5y+7)
Multiply the terms with the same base by adding their exponents
39y3+2×1325y2−49×(5y+7)
Add the numbers
39y5×1325y2−49×(5y+7)
Cancel out the common factor 13
3y5(25y2−49)(5y+7)
3y5(25y2−49)(5y+7)=0
Elimination the left coefficient
y5(25y2−49)(5y+7)=0
Separate the equation into 3 possible cases
y5=025y2−49=05y+7=0
The only way a power can be 0 is when the base equals 0
y=025y2−49=05y+7=0
Solve the equation
More Steps

Evaluate
25y2−49=0
Move the constant to the right-hand side and change its sign
25y2=0+49
Removing 0 doesn't change the value,so remove it from the expression
25y2=49
Divide both sides
2525y2=2549
Divide the numbers
y2=2549
Take the root of both sides of the equation and remember to use both positive and negative roots
y=±2549
Simplify the expression
More Steps

Evaluate
2549
To take a root of a fraction,take the root of the numerator and denominator separately
2549
Simplify the radical expression
257
Simplify the radical expression
57
y=±57
Separate the equation into 2 possible cases
y=57y=−57
y=0y=57y=−575y+7=0
Solve the equation
More Steps

Evaluate
5y+7=0
Move the constant to the right-hand side and change its sign
5y=0−7
Removing 0 doesn't change the value,so remove it from the expression
5y=−7
Divide both sides
55y=5−7
Divide the numbers
y=5−7
Use b−a=−ba=−ba to rewrite the fraction
y=−57
y=0y=57y=−57y=−57
Find the union
y=0y=57y=−57
Solution
y1=−57,y2=0,y3=57
Alternative Form
y1=−1.4,y2=0,y3=1.4
Show Solution
