Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
a1=4−5,a2=4+5
Alternative Form
a1≈1.763932,a2≈6.236068
Evaluate
3a2=3(8a−11)
Expand the expression
More Steps

Evaluate
3(8a−11)
Apply the distributive property
3×8a−3×11
Multiply the numbers
24a−3×11
Multiply the numbers
24a−33
3a2=24a−33
Move the expression to the left side
3a2−24a+33=0
Substitute a=3,b=−24 and c=33 into the quadratic formula a=2a−b±b2−4ac
a=2×324±(−24)2−4×3×33
Simplify the expression
a=624±(−24)2−4×3×33
Simplify the expression
More Steps

Evaluate
(−24)2−4×3×33
Multiply the terms
More Steps

Multiply the terms
4×3×33
Multiply the terms
12×33
Multiply the numbers
396
(−24)2−396
Rewrite the expression
242−396
Evaluate the power
576−396
Subtract the numbers
180
a=624±180
Simplify the radical expression
More Steps

Evaluate
180
Write the expression as a product where the root of one of the factors can be evaluated
36×5
Write the number in exponential form with the base of 6
62×5
The root of a product is equal to the product of the roots of each factor
62×5
Reduce the index of the radical and exponent with 2
65
a=624±65
Separate the equation into 2 possible cases
a=624+65a=624−65
Simplify the expression
More Steps

Evaluate
a=624+65
Divide the terms
More Steps

Evaluate
624+65
Rewrite the expression
66(4+5)
Reduce the fraction
4+5
a=4+5
a=4+5a=624−65
Simplify the expression
More Steps

Evaluate
a=624−65
Divide the terms
More Steps

Evaluate
624−65
Rewrite the expression
66(4−5)
Reduce the fraction
4−5
a=4−5
a=4+5a=4−5
Solution
a1=4−5,a2=4+5
Alternative Form
a1≈1.763932,a2≈6.236068
Show Solution
