Question Simplify the expression 3b2−70251 Evaluate 3b2−70250−1Solution 3b2−70251 Show Solution Factor the expression 3(b2−23417) Evaluate 3b2−70250−1Subtract the numbers 3b2−70251Solution 3(b2−23417) Show Solution Find the roots b1=−23417,b2=23417Alternative Form b1≈−153.026142,b2≈153.026142 Evaluate 3b2−70250−1To find the roots of the expression,set the expression equal to 0 3b2−70250−1=0Subtract the numbers 3b2−70251=0Move the constant to the right-hand side and change its sign 3b2=0+70251Removing 0 doesn't change the value,so remove it from the expression 3b2=70251Divide both sides 33b2=370251Divide the numbers b2=370251Divide the numbers More Steps Evaluate 370251Reduce the numbers 123417Calculate 23417 b2=23417Take the root of both sides of the equation and remember to use both positive and negative roots b=±23417Separate the equation into 2 possible cases b=23417b=−23417Solution b1=−23417,b2=23417Alternative Form b1≈−153.026142,b2≈153.026142 Show Solution