Question
Find the roots
d1=65−133,d2=65+133
Alternative Form
d1≈−1.08876,d2≈2.755427
Evaluate
3d2−5d−9
To find the roots of the expression,set the expression equal to 0
3d2−5d−9=0
Substitute a=3,b=−5 and c=−9 into the quadratic formula d=2a−b±b2−4ac
d=2×35±(−5)2−4×3(−9)
Simplify the expression
d=65±(−5)2−4×3(−9)
Simplify the expression
More Steps

Evaluate
(−5)2−4×3(−9)
Multiply
More Steps

Multiply the terms
4×3(−9)
Rewrite the expression
−4×3×9
Multiply the terms
−108
(−5)2−(−108)
Rewrite the expression
52−(−108)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
52+108
Evaluate the power
25+108
Add the numbers
133
d=65±133
Separate the equation into 2 possible cases
d=65+133d=65−133
Solution
d1=65−133,d2=65+133
Alternative Form
d1≈−1.08876,d2≈2.755427
Show Solution
