Question Simplify the expression 93d2−3 Evaluate 3d2×31−3Solution 93d2−3 Show Solution Factor the expression 3(31d2−1) Evaluate 3d2×31−3Multiply the terms 93d2−3Solution 3(31d2−1) Show Solution Find the roots d1=−3131,d2=3131Alternative Form d1≈−0.179605,d2≈0.179605 Evaluate 3d2×31−3To find the roots of the expression,set the expression equal to 0 3d2×31−3=0Multiply the terms 93d2−3=0Move the constant to the right-hand side and change its sign 93d2=0+3Removing 0 doesn't change the value,so remove it from the expression 93d2=3Divide both sides 9393d2=933Divide the numbers d2=933Cancel out the common factor 3 d2=311Take the root of both sides of the equation and remember to use both positive and negative roots d=±311Simplify the expression More Steps Evaluate 311To take a root of a fraction,take the root of the numerator and denominator separately 311Simplify the radical expression 311Multiply by the Conjugate 31×3131When a square root of an expression is multiplied by itself,the result is that expression 3131 d=±3131Separate the equation into 2 possible cases d=3131d=−3131Solution d1=−3131,d2=3131Alternative Form d1≈−0.179605,d2≈0.179605 Show Solution