Question
Simplify the expression
3k−40453543
Evaluate
3k−3−129−20201075
Cancel out the common factor 5
3k−3−129−404215
Subtract the numbers
3k−132−404215
Solution
More Steps

Evaluate
−132−404215
Reduce fractions to a common denominator
−404132×404−404215
Write all numerators above the common denominator
404−132×404−215
Multiply the numbers
404−53328−215
Subtract the numbers
404−53543
Use b−a=−ba=−ba to rewrite the fraction
−40453543
3k−40453543
Show Solution

Factor the expression
4041(1212k−53543)
Evaluate
3k−3−129−20201075
Cancel out the common factor 5
3k−3−129−404215
Subtract the numbers
3k−132−404215
Subtract the numbers
More Steps

Evaluate
−132−404215
Reduce fractions to a common denominator
−404132×404−404215
Write all numerators above the common denominator
404−132×404−215
Multiply the numbers
404−53328−215
Subtract the numbers
404−53543
Use b−a=−ba=−ba to rewrite the fraction
−40453543
3k−40453543
Solution
4041(1212k−53543)
Show Solution

Find the roots
k=121253543
Alternative Form
k=44.177˙392˙
Evaluate
3k−3−129−20201075
To find the roots of the expression,set the expression equal to 0
3k−3−129−20201075=0
Cancel out the common factor 5
3k−3−129−404215=0
Subtract the numbers
3k−132−404215=0
Subtract the numbers
More Steps

Simplify
3k−132−404215
Subtract the numbers
More Steps

Evaluate
−132−404215
Reduce fractions to a common denominator
−404132×404−404215
Write all numerators above the common denominator
404−132×404−215
Multiply the numbers
404−53328−215
Subtract the numbers
404−53543
Use b−a=−ba=−ba to rewrite the fraction
−40453543
3k−40453543
3k−40453543=0
Move the constant to the right-hand side and change its sign
3k=0+40453543
Add the terms
3k=40453543
Multiply by the reciprocal
3k×31=40453543×31
Multiply
k=40453543×31
Solution
More Steps

Evaluate
40453543×31
To multiply the fractions,multiply the numerators and denominators separately
404×353543
Multiply the numbers
121253543
k=121253543
Alternative Form
k=44.177˙392˙
Show Solution
