Question
Simplify the expression
3m−24183
Evaluate
3m−2090−1−21
Subtract the numbers
3m−2091−21
Solution
More Steps

Evaluate
−2091−21
Reduce fractions to a common denominator
−22091×2−21
Write all numerators above the common denominator
2−2091×2−1
Multiply the numbers
2−4182−1
Subtract the numbers
2−4183
Use b−a=−ba=−ba to rewrite the fraction
−24183
3m−24183
Show Solution

Factor the expression
21(6m−4183)
Evaluate
3m−2090−1−21
Subtract the numbers
3m−2091−21
Subtract the numbers
More Steps

Evaluate
−2091−21
Reduce fractions to a common denominator
−22091×2−21
Write all numerators above the common denominator
2−2091×2−1
Multiply the numbers
2−4182−1
Subtract the numbers
2−4183
Use b−a=−ba=−ba to rewrite the fraction
−24183
3m−24183
Solution
21(6m−4183)
Show Solution

Find the roots
m=64183
Alternative Form
m=697.16˙
Evaluate
3m−2090−1−21
To find the roots of the expression,set the expression equal to 0
3m−2090−1−21=0
Subtract the numbers
3m−2091−21=0
Subtract the numbers
More Steps

Simplify
3m−2091−21
Subtract the numbers
More Steps

Evaluate
−2091−21
Reduce fractions to a common denominator
−22091×2−21
Write all numerators above the common denominator
2−2091×2−1
Multiply the numbers
2−4182−1
Subtract the numbers
2−4183
Use b−a=−ba=−ba to rewrite the fraction
−24183
3m−24183
3m−24183=0
Move the constant to the right-hand side and change its sign
3m=0+24183
Add the terms
3m=24183
Multiply by the reciprocal
3m×31=24183×31
Multiply
m=24183×31
Solution
More Steps

Evaluate
24183×31
To multiply the fractions,multiply the numerators and denominators separately
2×34183
Multiply the numbers
64183
m=64183
Alternative Form
m=697.16˙
Show Solution
