Question
Simplify the expression
3m−41703
Evaluate
3m−425−43
Solution
More Steps

Evaluate
−425−43
Reduce fractions to a common denominator
−4425×4−43
Write all numerators above the common denominator
4−425×4−3
Multiply the numbers
4−1700−3
Subtract the numbers
4−1703
Use b−a=−ba=−ba to rewrite the fraction
−41703
3m−41703
Show Solution

Factor the expression
41(12m−1703)
Evaluate
3m−425−43
Subtract the numbers
More Steps

Evaluate
−425−43
Reduce fractions to a common denominator
−4425×4−43
Write all numerators above the common denominator
4−425×4−3
Multiply the numbers
4−1700−3
Subtract the numbers
4−1703
Use b−a=−ba=−ba to rewrite the fraction
−41703
3m−41703
Solution
41(12m−1703)
Show Solution

Find the roots
m=121703
Alternative Form
m=141.916˙
Evaluate
3m−425−43
To find the roots of the expression,set the expression equal to 0
3m−425−43=0
Subtract the numbers
More Steps

Simplify
3m−425−43
Subtract the numbers
More Steps

Evaluate
−425−43
Reduce fractions to a common denominator
−4425×4−43
Write all numerators above the common denominator
4−425×4−3
Multiply the numbers
4−1700−3
Subtract the numbers
4−1703
Use b−a=−ba=−ba to rewrite the fraction
−41703
3m−41703
3m−41703=0
Move the constant to the right-hand side and change its sign
3m=0+41703
Add the terms
3m=41703
Multiply by the reciprocal
3m×31=41703×31
Multiply
m=41703×31
Solution
More Steps

Evaluate
41703×31
To multiply the fractions,multiply the numerators and denominators separately
4×31703
Multiply the numbers
121703
m=121703
Alternative Form
m=141.916˙
Show Solution
