Question
Simplify the expression
12y3−122
Evaluate
3(2y)4y−122
Solution
More Steps

Evaluate
3(2y)4y
Multiply the terms
More Steps

Evaluate
3(2y)4
Rewrite the expression
3×4y2
Multiply the numbers
12y2
12y2×y
Multiply the terms
More Steps

Evaluate
y2×y
Use the product rule an×am=an+m to simplify the expression
y2+1
Add the numbers
y3
12y3
12y3−122
Show Solution

Factor the expression
12(y3−2)
Evaluate
3(2y)4y−122
Multiply the terms
More Steps

Evaluate
3(2y)4y
Multiply the terms
More Steps

Evaluate
3(2y)4
Rewrite the expression
3×4y2
Multiply the numbers
12y2
12y2×y
Multiply the terms
More Steps

Evaluate
y2×y
Use the product rule an×am=an+m to simplify the expression
y2+1
Add the numbers
y3
12y3
12y3−122
Solution
12(y3−2)
Show Solution

Find the roots
y=62
Alternative Form
y≈1.122462
Evaluate
3(2y)4y−122
To find the roots of the expression,set the expression equal to 0
3(2y)4y−122=0
Find the domain
3(2y)4y−122=0,y≥0
Calculate
3(2y)4y−122=0
Multiply the terms
More Steps

Multiply the terms
3(2y)4y
Multiply the terms
More Steps

Evaluate
3(2y)4
Rewrite the expression
3×4y2
Multiply the numbers
12y2
12y2×y
Multiply the terms
More Steps

Evaluate
y2×y
Use the product rule an×am=an+m to simplify the expression
y2+1
Add the numbers
y3
12y3
12y3−122=0
Move the constant to the right-hand side and change its sign
12y3=0+122
Add the terms
12y3=122
Divide both sides
1212y3=12122
Divide the numbers
y3=12122
Divide the numbers
More Steps

Evaluate
12122
Reduce the numbers
12
Calculate
2
y3=2
Take the 3-th root on both sides of the equation
3y3=32
Calculate
y=32
Simplify the root
More Steps

Evaluate
32
Use mna=mna to simplify the expression
3×22
Multiply the numbers
62
y=62
Check if the solution is in the defined range
y=62,y≥0
Solution
y=62
Alternative Form
y≈1.122462
Show Solution
