Question
Simplify the expression
194400e2s2n2−1620e2s2n2x+3e2s2n2x2
Evaluate
3sen(360−x)sen(180−x)
Multiply the terms
3s2en(360−x)en(180−x)
Multiply the terms
More Steps

Evaluate
e×e
Multiply the terms with the same base by adding their exponents
e1+1
Add the numbers
e2
3s2e2n(360−x)n(180−x)
Multiply the terms
3s2e2n2(360−x)(180−x)
Multiply the numbers
3e2s2n2(360−x)(180−x)
Multiply the terms
More Steps

Evaluate
3e2s2n2(360−x)
Apply the distributive property
3e2s2n2×360−3e2s2n2x
Multiply the numbers
1080e2s2n2−3e2s2n2x
(1080e2s2n2−3e2s2n2x)(180−x)
Apply the distributive property
1080e2s2n2×180−1080e2s2n2x−3e2s2n2x×180−(−3e2s2n2x×x)
Multiply the numbers
194400e2s2n2−1080e2s2n2x−3e2s2n2x×180−(−3e2s2n2x×x)
Multiply the numbers
194400e2s2n2−1080e2s2n2x−540e2s2n2x−(−3e2s2n2x×x)
Multiply the terms
194400e2s2n2−1080e2s2n2x−540e2s2n2x−(−3e2s2n2x2)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
194400e2s2n2−1080e2s2n2x−540e2s2n2x+3e2s2n2x2
Solution
More Steps

Evaluate
−1080e2s2n2x−540e2s2n2x
Collect like terms by calculating the sum or difference of their coefficients
(−1080−540)e2s2n2x
Subtract the numbers
−1620e2s2n2x
194400e2s2n2−1620e2s2n2x+3e2s2n2x2
Show Solution
