Question
Solve the equation
x={arcsin(61)+2kπ−arcsin(61)+π+2kπ,k∈Z
Alternative Form
x≈{9.594068∘+360∘k170.405932∘+360∘k,k∈Z
Alternative Form
x≈{0.167448+2kπ2.974145+2kπ,k∈Z
Evaluate
3sin(x×1)×2=1
Simplify
More Steps

Evaluate
3sin(x×1)×2
Any expression multiplied by 1 remains the same
3sin(x)×2
Multiply the terms
6sin(x)
6sin(x)=1
Multiply both sides of the equation by 61
6sin(x)×61=1×61
Calculate
sin(x)=1×61
Any expression multiplied by 1 remains the same
sin(x)=61
Use the inverse trigonometric function
x=arcsin(61)
Calculate
x=arcsin(61)x=−arcsin(61)+π
Add the period of 2kπ,k∈Z to find all solutions
x=arcsin(61)+2kπ,k∈Zx=−arcsin(61)+π+2kπ,k∈Z
Solution
x={arcsin(61)+2kπ−arcsin(61)+π+2kπ,k∈Z
Alternative Form
x≈{9.594068∘+360∘k170.405932∘+360∘k,k∈Z
Alternative Form
x≈{0.167448+2kπ2.974145+2kπ,k∈Z
Show Solution
