Question
Simplify the expression
3t3−7t2−21t
Evaluate
3t3−7t2−3t×7
Solution
3t3−7t2−21t
Show Solution

Factor the expression
t(3t2−7t−21)
Evaluate
3t3−7t2−3t×7
Multiply the terms
3t3−7t2−21t
Rewrite the expression
t×3t2−t×7t−t×21
Solution
t(3t2−7t−21)
Show Solution

Find the roots
t1=67−301,t2=0,t3=67+301
Alternative Form
t1≈−1.724892,t2=0,t3≈4.058225
Evaluate
3t3−7t2−3t×7
To find the roots of the expression,set the expression equal to 0
3t3−7t2−3t×7=0
Multiply the terms
3t3−7t2−21t=0
Factor the expression
t(3t2−7t−21)=0
Separate the equation into 2 possible cases
t=03t2−7t−21=0
Solve the equation
More Steps

Evaluate
3t2−7t−21=0
Substitute a=3,b=−7 and c=−21 into the quadratic formula t=2a−b±b2−4ac
t=2×37±(−7)2−4×3(−21)
Simplify the expression
t=67±(−7)2−4×3(−21)
Simplify the expression
More Steps

Evaluate
(−7)2−4×3(−21)
Multiply
(−7)2−(−252)
Rewrite the expression
72−(−252)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
72+252
Evaluate the power
49+252
Add the numbers
301
t=67±301
Separate the equation into 2 possible cases
t=67+301t=67−301
t=0t=67+301t=67−301
Solution
t1=67−301,t2=0,t3=67+301
Alternative Form
t1≈−1.724892,t2=0,t3≈4.058225
Show Solution
