Question
Solve the equation
x=32k,k∈Z
Alternative Form
x≈1833.464944∘k,k∈Z
Evaluate
3tan(4x×8π)=tan(4x×8π)
Find the domain
More Steps

Evaluate
4x×8π=2π+kπ,k∈Z
Multiply the terms
More Steps

Multiply the terms
4x×8π
Multiply the terms
4×8xπ
Use the commutative property to reorder the terms
4×8πx
Multiply the terms
32πx
32πx=2π+kπ,k∈Z
Multiply both sides
32πx×32=(2π+kπ)×32,k∈Z
Calculate
32πx×32=16π+32kπ,k∈Z
Calculate
More Steps

Multiply the terms
32πx×32
Cancel out the common factor 32
πx×1
Multiply the terms
πx
πx=16π+32kπ,k∈Z
Divide both sides
ππx=π16π+32kπ,k∈Z
Divide the numbers
x=π16π+32kπ,k∈Z
Divide the numbers
x=16+32k,k∈Z
3tan(4x×8π)=tan(4x×8π),x=16+32k,k∈Z
Multiply the terms
More Steps

Multiply the terms
4x×8π
Multiply the terms
4×8xπ
Use the commutative property to reorder the terms
4×8πx
Multiply the terms
32πx
3tan(32πx)=tan(4x×8π)
Multiply the terms
More Steps

Multiply the terms
4x×8π
Multiply the terms
4×8xπ
Use the commutative property to reorder the terms
4×8πx
Multiply the terms
32πx
3tan(32πx)=tan(32πx)
Move the expression to the left side
3tan(32πx)−tan(32πx)=0
Calculate
More Steps

Evaluate
3tan(32πx)−tan(32πx)
Collect like terms by calculating the sum or difference of their coefficients
(3−1)tan(32πx)
Subtract the numbers
2tan(32πx)
2tan(32πx)=0
Multiply both sides of the equation by 21
2tan(32πx)×21=0×21
Calculate
tan(32πx)=0×21
Any expression multiplied by 0 equals 0
tan(32πx)=0
Use the inverse trigonometric function
32πx=arctan(0)
Calculate
32πx=0
Add the period of kπ,k∈Z to find all solutions
32πx=kπ,k∈Z
Solve the equation
More Steps

Evaluate
32πx=kπ
Cross multiply
πx=32kπ
Divide both sides
ππx=π32kπ
Divide the numbers
x=π32kπ
Divide the numbers
x=32k
x=32k,k∈Z
Check if the solution is in the defined range
x=32k,k∈Z,x=16+32k,k∈Z
Solution
x=32k,k∈Z
Alternative Form
x≈1833.464944∘k,k∈Z
Show Solution
