Question
Solve the equation
x1=−10,x2=35
Alternative Form
x1=−10,x2=1.6˙
Evaluate
(3×25x)×2x=1−2x
Remove the parentheses
3×25x×2x=1−2x
Multiply the terms
More Steps

Evaluate
3×25x×2x
Multiply the terms
253x×2x
Multiply the terms
25×23x×x
Multiply the terms
25×23x2
Multiply the terms
503x2
503x2=1−2x
Multiply both sides of the equation by LCD
503x2×50=(1−2x)×50
Simplify the equation
3x2=(1−2x)×50
Simplify the equation
More Steps

Evaluate
(1−2x)×50
Apply the distributive property
1×50−2x×50
Simplify
1×50−x×25
Any expression multiplied by 1 remains the same
50−x×25
Use the commutative property to reorder the terms
50−25x
3x2=50−25x
Move the expression to the left side
3x2−(50−25x)=0
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
3x2−50+25x=0
Factor the expression
More Steps

Evaluate
3x2−50+25x
Reorder the terms
3x2+25x−50
Rewrite the expression
3x2+(−5+30)x−50
Calculate
3x2−5x+30x−50
Rewrite the expression
x×3x−x×5+10×3x−10×5
Factor out x from the expression
x(3x−5)+10×3x−10×5
Factor out 10 from the expression
x(3x−5)+10(3x−5)
Factor out 3x−5 from the expression
(x+10)(3x−5)
(x+10)(3x−5)=0
When the product of factors equals 0,at least one factor is 0
x+10=03x−5=0
Solve the equation for x
More Steps

Evaluate
x+10=0
Move the constant to the right-hand side and change its sign
x=0−10
Removing 0 doesn't change the value,so remove it from the expression
x=−10
x=−103x−5=0
Solve the equation for x
More Steps

Evaluate
3x−5=0
Move the constant to the right-hand side and change its sign
3x=0+5
Removing 0 doesn't change the value,so remove it from the expression
3x=5
Divide both sides
33x=35
Divide the numbers
x=35
x=−10x=35
Solution
x1=−10,x2=35
Alternative Form
x1=−10,x2=1.6˙
Show Solution
