Question
Solve the equation(The real numbers system)
x∈/R
Alternative Form
No real solution
Evaluate
3x(−5x)=7−(5x−4)
Multiply
More Steps

Evaluate
3x(−5x)
Rewrite the expression
−3x×5x
Multiply the terms
−15x×x
Multiply the terms
−15x2
−15x2=7−(5x−4)
Subtract the terms
More Steps

Evaluate
7−(5x−4)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
7−5x+4
Add the numbers
11−5x
−15x2=11−5x
Move the expression to the left side
−15x2−11+5x=0
Rewrite in standard form
−15x2+5x−11=0
Multiply both sides
15x2−5x+11=0
Substitute a=15,b=−5 and c=11 into the quadratic formula x=2a−b±b2−4ac
x=2×155±(−5)2−4×15×11
Simplify the expression
x=305±(−5)2−4×15×11
Simplify the expression
More Steps

Evaluate
(−5)2−4×15×11
Multiply the terms
More Steps

Multiply the terms
4×15×11
Multiply the terms
60×11
Multiply the numbers
660
(−5)2−660
Rewrite the expression
52−660
Evaluate the power
25−660
Subtract the numbers
−635
x=305±−635
Solution
x∈/R
Alternative Form
No real solution
Show Solution

Solve the equation(The complex numbers system)
Solve using the quadratic formula in the complex numbers system
Solve by completing the square in the complex numbers system
Solve using the PQ formula in the complex numbers system
x1=61−30635i,x2=61+30635i
Alternative Form
x1≈0.16˙−0.839974i,x2≈0.16˙+0.839974i
Evaluate
3x(−5x)=7−(5x−4)
Multiply
More Steps

Evaluate
3x(−5x)
Rewrite the expression
−3x×5x
Multiply the terms
−15x×x
Multiply the terms
−15x2
−15x2=7−(5x−4)
Subtract the terms
More Steps

Evaluate
7−(5x−4)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
7−5x+4
Add the numbers
11−5x
−15x2=11−5x
Move the expression to the left side
−15x2−11+5x=0
Rewrite in standard form
−15x2+5x−11=0
Multiply both sides
15x2−5x+11=0
Substitute a=15,b=−5 and c=11 into the quadratic formula x=2a−b±b2−4ac
x=2×155±(−5)2−4×15×11
Simplify the expression
x=305±(−5)2−4×15×11
Simplify the expression
More Steps

Evaluate
(−5)2−4×15×11
Multiply the terms
More Steps

Multiply the terms
4×15×11
Multiply the terms
60×11
Multiply the numbers
660
(−5)2−660
Rewrite the expression
52−660
Evaluate the power
25−660
Subtract the numbers
−635
x=305±−635
Simplify the radical expression
More Steps

Evaluate
−635
Evaluate the power
635×−1
Evaluate the power
635×i
x=305±635×i
Separate the equation into 2 possible cases
x=305+635×ix=305−635×i
Simplify the expression
x=61+30635ix=305−635×i
Simplify the expression
x=61+30635ix=61−30635i
Solution
x1=61−30635i,x2=61+30635i
Alternative Form
x1≈0.16˙−0.839974i,x2≈0.16˙+0.839974i
Show Solution
