Question
Solve the equation
Solve for x
Solve for y
x=−15y7
Evaluate
3x×10y=−14
Multiply the terms
30xy=−14
Rewrite the expression
30yx=−14
Divide both sides
30y30yx=30y−14
Divide the numbers
x=30y−14
Solution
More Steps

Evaluate
30y−14
Cancel out the common factor 2
15y−7
Use b−a=−ba=−ba to rewrite the fraction
−15y7
x=−15y7
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Symmetry with respect to the origin
Evaluate
3x×10y=−14
Multiply the terms
30xy=−14
To test if the graph of 30xy=−14 is symmetry with respect to the origin,substitute -x for x and -y for y
30(−x)(−y)=−14
Evaluate
30xy=−14
Solution
Symmetry with respect to the origin
Show Solution

Rewrite the equation
r=15∣−sin(2θ)∣−210sin(2θ)r=−15∣−sin(2θ)∣−210sin(2θ)
Evaluate
3x×10y=−14
Evaluate
30xy=−14
To convert the equation to polar coordinates,substitute x for rcos(θ) and y for rsin(θ)
30cos(θ)×rsin(θ)×r=−14
Factor the expression
30cos(θ)sin(θ)×r2=−14
Simplify the expression
15sin(2θ)×r2=−14
Divide the terms
r2=−15sin(2θ)14
Evaluate the power
r=±−15sin(2θ)14
Simplify the expression
More Steps

Evaluate
−15sin(2θ)14
To take a root of a fraction,take the root of the numerator and denominator separately
−15sin(2θ)14
Multiply by the Conjugate
−15sin(2θ)×−15sin(2θ)14×−15sin(2θ)
Calculate
15∣−sin(2θ)∣14×−15sin(2θ)
Calculate
More Steps

Evaluate
14×−15sin(2θ)
The product of roots with the same index is equal to the root of the product
14(−15sin(2θ))
Calculate the product
−210sin(2θ)
15∣−sin(2θ)∣−210sin(2θ)
r=±15∣−sin(2θ)∣−210sin(2θ)
Solution
r=15∣−sin(2θ)∣−210sin(2θ)r=−15∣−sin(2θ)∣−210sin(2θ)
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=−xy
Calculate
3x10y=−14
Simplify the expression
30xy=−14
Take the derivative of both sides
dxd(30xy)=dxd(−14)
Calculate the derivative
More Steps

Evaluate
dxd(30xy)
Use differentiation rules
dxd(30x)×y+30x×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(30x)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
30×dxd(x)
Use dxdxn=nxn−1 to find derivative
30×1
Any expression multiplied by 1 remains the same
30
30y+30x×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(y)
Use differentiation rules
dyd(y)×dxdy
Use dxdxn=nxn−1 to find derivative
dxdy
30y+30xdxdy
30y+30xdxdy=dxd(−14)
Calculate the derivative
30y+30xdxdy=0
Move the expression to the right-hand side and change its sign
30xdxdy=0−30y
Removing 0 doesn't change the value,so remove it from the expression
30xdxdy=−30y
Divide both sides
30x30xdxdy=30x−30y
Divide the numbers
dxdy=30x−30y
Solution
More Steps

Evaluate
30x−30y
Cancel out the common factor 30
x−y
Use b−a=−ba=−ba to rewrite the fraction
−xy
dxdy=−xy
Show Solution

Find the second derivative
Find the second derivative with respect to x
Find the second derivative with respect to y
dx2d2y=x22y
Calculate
3x10y=−14
Simplify the expression
30xy=−14
Take the derivative of both sides
dxd(30xy)=dxd(−14)
Calculate the derivative
More Steps

Evaluate
dxd(30xy)
Use differentiation rules
dxd(30x)×y+30x×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(30x)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
30×dxd(x)
Use dxdxn=nxn−1 to find derivative
30×1
Any expression multiplied by 1 remains the same
30
30y+30x×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(y)
Use differentiation rules
dyd(y)×dxdy
Use dxdxn=nxn−1 to find derivative
dxdy
30y+30xdxdy
30y+30xdxdy=dxd(−14)
Calculate the derivative
30y+30xdxdy=0
Move the expression to the right-hand side and change its sign
30xdxdy=0−30y
Removing 0 doesn't change the value,so remove it from the expression
30xdxdy=−30y
Divide both sides
30x30xdxdy=30x−30y
Divide the numbers
dxdy=30x−30y
Divide the numbers
More Steps

Evaluate
30x−30y
Cancel out the common factor 30
x−y
Use b−a=−ba=−ba to rewrite the fraction
−xy
dxdy=−xy
Take the derivative of both sides
dxd(dxdy)=dxd(−xy)
Calculate the derivative
dx2d2y=dxd(−xy)
Use differentiation rules
dx2d2y=−x2dxd(y)×x−y×dxd(x)
Calculate the derivative
More Steps

Evaluate
dxd(y)
Use differentiation rules
dyd(y)×dxdy
Use dxdxn=nxn−1 to find derivative
dxdy
dx2d2y=−x2dxdy×x−y×dxd(x)
Use dxdxn=nxn−1 to find derivative
dx2d2y=−x2dxdy×x−y×1
Use the commutative property to reorder the terms
dx2d2y=−x2xdxdy−y×1
Any expression multiplied by 1 remains the same
dx2d2y=−x2xdxdy−y
Use equation dxdy=−xy to substitute
dx2d2y=−x2x(−xy)−y
Solution
More Steps

Calculate
−x2x(−xy)−y
Multiply the terms
More Steps

Evaluate
x(−xy)
Multiplying or dividing an odd number of negative terms equals a negative
−x×xy
Cancel out the common factor x
−1×y
Multiply the terms
−y
−x2−y−y
Subtract the terms
More Steps

Simplify
−y−y
Collect like terms by calculating the sum or difference of their coefficients
(−1−1)y
Subtract the numbers
−2y
−x2−2y
Divide the terms
−(−x22y)
Calculate
x22y
dx2d2y=x22y
Show Solution

Conic
1514(y′)2−1514(x′)2=1
Evaluate
3x×10y=−14
Move the expression to the left side
3x×10y−(−14)=0
Calculate
More Steps

Calculate
3x×10y−(−14)
Multiply the terms
30xy−(−14)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
30xy+14
30xy+14=0
The coefficients A,B and C of the general equation are A=0,B=30 and C=0
A=0B=30C=0
To find the angle of rotation θ,substitute the values of A,B and C into the formula cot(2θ)=BA−C
cot(2θ)=300−0
Calculate
cot(2θ)=0
Using the unit circle,find the smallest positive angle for which the cotangent is 0
2θ=2π
Calculate
θ=4π
To rotate the axes,use the equation of rotation and substitute 4π for θ
x=x′cos(4π)−y′sin(4π)y=x′sin(4π)+y′cos(4π)
Calculate
x=x′×22−y′sin(4π)y=x′sin(4π)+y′cos(4π)
Calculate
x=x′×22−y′×22y=x′sin(4π)+y′cos(4π)
Calculate
x=x′×22−y′×22y=x′×22+y′cos(4π)
Calculate
x=x′×22−y′×22y=x′×22+y′×22
Substitute x and y into the original equation 30xy+14=0
30(x′×22−y′×22)(x′×22+y′×22)+14=0
Calculate
More Steps

Calculate
30(x′×22−y′×22)(x′×22+y′×22)+14
Use the commutative property to reorder the terms
30(22x′−y′×22)(x′×22+y′×22)+14
Use the commutative property to reorder the terms
30(22x′−22y′)(x′×22+y′×22)+14
Use the commutative property to reorder the terms
30(22x′−22y′)(22x′+y′×22)+14
Use the commutative property to reorder the terms
30(22x′−22y′)(22x′+22y′)+14
Expand the expression
More Steps

Calculate
30(22x′−22y′)(22x′+22y′)
Simplify
(152×x′−152×y′)(22x′+22y′)
Apply the distributive property
152×x′×22x′+152×x′×22y′−152×y′×22x′−152×y′×22y′
Multiply the terms
15(x′)2+152×x′×22y′−152×y′×22x′−152×y′×22y′
Multiply the numbers
15(x′)2+15x′y′−152×y′×22x′−152×y′×22y′
Multiply the numbers
15(x′)2+15x′y′−15y′x′−152×y′×22y′
Multiply the terms
15(x′)2+15x′y′−15y′x′−15(y′)2
Subtract the terms
15(x′)2+0−15(y′)2
Removing 0 doesn't change the value,so remove it from the expression
15(x′)2−15(y′)2
15(x′)2−15(y′)2+14
15(x′)2−15(y′)2+14=0
Move the constant to the right-hand side and change its sign
15(x′)2−15(y′)2=0−14
Removing 0 doesn't change the value,so remove it from the expression
15(x′)2−15(y′)2=−14
Multiply both sides of the equation by −141
(15(x′)2−15(y′)2)(−141)=−14(−141)
Multiply the terms
More Steps

Evaluate
(15(x′)2−15(y′)2)(−141)
Use the the distributive property to expand the expression
15(x′)2(−141)−15(y′)2(−141)
Multiply the numbers
More Steps

Evaluate
15(−141)
Multiplying or dividing an odd number of negative terms equals a negative
−15×141
Multiply the numbers
−1415
−1415(x′)2−15(y′)2(−141)
Multiply the numbers
More Steps

Evaluate
−15(−141)
Multiplying or dividing an even number of negative terms equals a positive
15×141
Multiply the numbers
1415
−1415(x′)2+1415(y′)2
−1415(x′)2+1415(y′)2=−14(−141)
Multiply the terms
More Steps

Evaluate
−14(−141)
Multiplying or dividing an even number of negative terms equals a positive
14×141
Reduce the numbers
1×1
Simplify
1
−1415(x′)2+1415(y′)2=1
Use a=a11 to transform the expression
−1514(x′)2+1415(y′)2=1
Use a=a11 to transform the expression
−1514(x′)2+1514(y′)2=1
Solution
1514(y′)2−1514(x′)2=1
Show Solution
