Question
Find the roots
x1=32−27,x2=32+27
Alternative Form
x1≈−1.097168,x2≈2.430501
Evaluate
3x2−4x−8
To find the roots of the expression,set the expression equal to 0
3x2−4x−8=0
Substitute a=3,b=−4 and c=−8 into the quadratic formula x=2a−b±b2−4ac
x=2×34±(−4)2−4×3(−8)
Simplify the expression
x=64±(−4)2−4×3(−8)
Simplify the expression
More Steps

Evaluate
(−4)2−4×3(−8)
Multiply
More Steps

Multiply the terms
4×3(−8)
Rewrite the expression
−4×3×8
Multiply the terms
−96
(−4)2−(−96)
Rewrite the expression
42−(−96)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
42+96
Evaluate the power
16+96
Add the numbers
112
x=64±112
Simplify the radical expression
More Steps

Evaluate
112
Write the expression as a product where the root of one of the factors can be evaluated
16×7
Write the number in exponential form with the base of 4
42×7
The root of a product is equal to the product of the roots of each factor
42×7
Reduce the index of the radical and exponent with 2
47
x=64±47
Separate the equation into 2 possible cases
x=64+47x=64−47
Simplify the expression
More Steps

Evaluate
x=64+47
Divide the terms
More Steps

Evaluate
64+47
Rewrite the expression
62(2+27)
Cancel out the common factor 2
32+27
x=32+27
x=32+27x=64−47
Simplify the expression
More Steps

Evaluate
x=64−47
Divide the terms
More Steps

Evaluate
64−47
Rewrite the expression
62(2−27)
Cancel out the common factor 2
32−27
x=32−27
x=32+27x=32−27
Solution
x1=32−27,x2=32+27
Alternative Form
x1≈−1.097168,x2≈2.430501
Show Solution
