Question
Simplify the expression
3x2−70x3+140x
Evaluate
3x2−5(2x2−4)×7x
Multiply
More Steps

Multiply the terms
5(2x2−4)×7x
Multiply the terms
35(2x2−4)x
Multiply the terms
35x(2x2−4)
3x2−35x(2x2−4)
Solution
More Steps

Evaluate
−35x(2x2−4)
Apply the distributive property
−35x×2x2−(−35x×4)
Multiply the terms
More Steps

Evaluate
−35x×2x2
Multiply the numbers
−70x×x2
Multiply the terms
−70x3
−70x3−(−35x×4)
Multiply the numbers
−70x3−(−140x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−70x3+140x
3x2−70x3+140x
Show Solution

Factor the expression
(3x−70x2+140)x
Evaluate
3x2−5(2x2−4)×7x
Multiply
More Steps

Evaluate
5(2x2−4)×7x
Multiply the terms
35(2x2−4)x
Multiply the terms
35x(2x2−4)
3x2−35x(2x2−4)
Rewrite the expression
3x×x−70(x2−2)x
Factor out x from the expression
(3x−70(x2−2))x
Solution
(3x−70x2+140)x
Show Solution

Find the roots
x1=1403−39209,x2=0,x3=1403+39209
Alternative Form
x1≈−1.392947,x2=0,x3≈1.435804
Evaluate
3x2−5(2x2−4)×7x
To find the roots of the expression,set the expression equal to 0
3x2−5(2x2−4)×7x=0
Multiply
More Steps

Multiply the terms
5(2x2−4)×7x
Multiply the terms
35(2x2−4)x
Multiply the terms
35x(2x2−4)
3x2−35x(2x2−4)=0
Calculate
More Steps

Evaluate
−35x(2x2−4)
Apply the distributive property
−35x×2x2−(−35x×4)
Multiply the terms
More Steps

Evaluate
−35x×2x2
Multiply the numbers
−70x×x2
Multiply the terms
−70x3
−70x3−(−35x×4)
Multiply the numbers
−70x3−(−140x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−70x3+140x
3x2−70x3+140x=0
Factor the expression
x(3x−70x2+140)=0
Separate the equation into 2 possible cases
x=03x−70x2+140=0
Solve the equation
More Steps

Evaluate
3x−70x2+140=0
Rewrite in standard form
−70x2+3x+140=0
Multiply both sides
70x2−3x−140=0
Substitute a=70,b=−3 and c=−140 into the quadratic formula x=2a−b±b2−4ac
x=2×703±(−3)2−4×70(−140)
Simplify the expression
x=1403±(−3)2−4×70(−140)
Simplify the expression
More Steps

Evaluate
(−3)2−4×70(−140)
Multiply
(−3)2−(−39200)
Rewrite the expression
32−(−39200)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
32+39200
Evaluate the power
9+39200
Add the numbers
39209
x=1403±39209
Separate the equation into 2 possible cases
x=1403+39209x=1403−39209
x=0x=1403+39209x=1403−39209
Solution
x1=1403−39209,x2=0,x3=1403+39209
Alternative Form
x1≈−1.392947,x2=0,x3≈1.435804
Show Solution
