Question
Simplify the expression
3x2−x6−2
Evaluate
3x2−x5×x−2
Solution
More Steps

Evaluate
x5×x
Use the product rule an×am=an+m to simplify the expression
x5+1
Add the numbers
x6
3x2−x6−2
Show Solution

Factor the expression
−(x−1)2(x+1)2(x2+2)
Evaluate
3x2−x5×x−2
Multiply the terms
More Steps

Evaluate
x5×x
Use the product rule an×am=an+m to simplify the expression
x5+1
Add the numbers
x6
3x2−x6−2
Evaluate
−x6+3x2−2
Calculate
−x6−3x4−2x5−4x3−2x2+2x5+6x3+4x4+8x2+4x−x4−3x2−2x3−4x−2
Rewrite the expression
x2(−x4)−x2×3x2−x2×2x3−x2×4x−x2×2+2x×x4+2x×3x2+2x×2x3+2x×4x+2x×2+−x4−3x2−2x3−4x−2
Factor out x2 from the expression
x2(−x4−3x2−2x3−4x−2)+2x×x4+2x×3x2+2x×2x3+2x×4x+2x×2+−x4−3x2−2x3−4x−2
Factor out −2x from the expression
x2(−x4−3x2−2x3−4x−2)−2x(−x4−3x2−2x3−4x−2)+−x4−3x2−2x3−4x−2
Factor out −x4−3x2−2x3−4x−2 from the expression
(x2−2x+1)(−x4−3x2−2x3−4x−2)
Factor the expression
More Steps

Evaluate
−x4−3x2−2x3−4x−2
Calculate
−x4−2x2−2x3−4x−x2−2
Rewrite the expression
x2(−x2)−x2×2−2x×x2−2x×2+−x2−2
Factor out x2 from the expression
x2(−x2−2)−2x×x2−2x×2+−x2−2
Factor out 2x from the expression
x2(−x2−2)+2x(−x2−2)+−x2−2
Factor out −x2−2 from the expression
(x2+2x+1)(−x2−2)
(x2−2x+1)(x2+2x+1)(−x2−2)
Use a2−2ab+b2=(a−b)2 to factor the expression
(x−1)2(x2+2x+1)(−x2−2)
Use a2+2ab+b2=(a+b)2 to factor the expression
(x−1)2(x+1)2(−x2−2)
Solution
−(x−1)2(x+1)2(x2+2)
Show Solution

Find the roots
x1=−2×i,x2=2×i,x3=−1,x4=1
Alternative Form
x1≈−1.414214i,x2≈1.414214i,x3=−1,x4=1
Evaluate
3x2−x5×x−2
To find the roots of the expression,set the expression equal to 0
3x2−x5×x−2=0
Multiply the terms
More Steps

Evaluate
x5×x
Use the product rule an×am=an+m to simplify the expression
x5+1
Add the numbers
x6
3x2−x6−2=0
Factor the expression
(x−1)2(x+1)2(−x2−2)=0
Separate the equation into 3 possible cases
(x−1)2=0(x+1)2=0−x2−2=0
Solve the equation
More Steps

Evaluate
(x−1)2=0
The only way a power can be 0 is when the base equals 0
x−1=0
Move the constant to the right-hand side and change its sign
x=0+1
Removing 0 doesn't change the value,so remove it from the expression
x=1
x=1(x+1)2=0−x2−2=0
Solve the equation
More Steps

Evaluate
(x+1)2=0
The only way a power can be 0 is when the base equals 0
x+1=0
Move the constant to the right-hand side and change its sign
x=0−1
Removing 0 doesn't change the value,so remove it from the expression
x=−1
x=1x=−1−x2−2=0
Solve the equation
More Steps

Evaluate
−x2−2=0
Move the constant to the right side
−x2=2
Change the signs on both sides of the equation
x2=−2
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±−2
Simplify the expression
More Steps

Evaluate
−2
Evaluate the power
2×−1
Evaluate the power
2×i
x=±(2×i)
Separate the equation into 2 possible cases
x=2×ix=−2×i
x=1x=−1x=2×ix=−2×i
Solution
x1=−2×i,x2=2×i,x3=−1,x4=1
Alternative Form
x1≈−1.414214i,x2≈1.414214i,x3=−1,x4=1
Show Solution
