Question
Simplify the expression
3x4−2x3−4x2−96x
Evaluate
3x4−2x3−4x2−4x×x212×2x2
Solution
More Steps

Evaluate
−4x×x212×2x2
Multiply the terms
−8x×x212×x2
Multiply the terms with the same base by adding their exponents
−8x1+2×x212
Add the numbers
−8x3×x212
Multiply the terms
More Steps

Multiply the terms
8x3×x212
Cancel out the common factor x2
8x×12
Multiply the terms
96x
−96x
3x4−2x3−4x2−96x
Show Solution

Find the excluded values
x=0
Evaluate
3x4−2x3−4x2−4x×x212×2x2
To find the excluded values,set the denominators equal to 0
x2=0
Solution
x=0
Show Solution

Factor the expression
x(3x3−2x2−4x−96)
Evaluate
3x4−2x3−4x2−4x×x212×2x2
Multiply
More Steps

Evaluate
4x×x212×2x2
Multiply the terms
8x×x212×x2
Multiply the terms with the same base by adding their exponents
8x1+2×x212
Add the numbers
8x3×x212
Cancel out the common factor x2
8x×12
Multiply the terms
96x
3x4−2x3−4x2−96x
Rewrite the expression
x×3x3−x×2x2−x×4x−x×96
Solution
x(3x3−2x2−4x−96)
Show Solution

Find the roots
x≈3.562431
Evaluate
3x4−2x3−4x2−4x×x212×2x2
To find the roots of the expression,set the expression equal to 0
3x4−2x3−4x2−4x×x212×2x2=0
The only way a power can not be 0 is when the base not equals 0
3x4−2x3−4x2−4x×x212×2x2=0,x=0
Calculate
3x4−2x3−4x2−4x×x212×2x2=0
Multiply
More Steps

Multiply the terms
4x×x212×2x2
Multiply the terms
8x×x212×x2
Multiply the terms with the same base by adding their exponents
8x1+2×x212
Add the numbers
8x3×x212
Cancel out the common factor x2
8x×12
Multiply the terms
96x
3x4−2x3−4x2−96x=0
Factor the expression
x(3x3−2x2−4x−96)=0
Separate the equation into 2 possible cases
x=03x3−2x2−4x−96=0
Solve the equation
x=0x≈3.562431
Check if the solution is in the defined range
x=0x≈3.562431,x=0
Solution
x≈3.562431
Show Solution
