Question
Solve the equation
x1=−2521,x2=0
Alternative Form
x1=−0.003˙96825˙,x2=0
Evaluate
3x2×12x×7=−x2
Multiply
More Steps

Evaluate
3x2×12x×7
Multiply the terms
More Steps

Evaluate
3×12×7
Multiply the terms
36×7
Multiply the numbers
252
252x2×x
Multiply the terms with the same base by adding their exponents
252x2+1
Add the numbers
252x3
252x3=−x2
Add or subtract both sides
252x3−(−x2)=0
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
252x3+x2=0
Factor the expression
x2(252x+1)=0
Separate the equation into 2 possible cases
x2=0252x+1=0
The only way a power can be 0 is when the base equals 0
x=0252x+1=0
Solve the equation
More Steps

Evaluate
252x+1=0
Move the constant to the right-hand side and change its sign
252x=0−1
Removing 0 doesn't change the value,so remove it from the expression
252x=−1
Divide both sides
252252x=252−1
Divide the numbers
x=252−1
Use b−a=−ba=−ba to rewrite the fraction
x=−2521
x=0x=−2521
Solution
x1=−2521,x2=0
Alternative Form
x1=−0.003˙96825˙,x2=0
Show Solution
