Question
Simplify the expression
917x2+13x−4
Evaluate
3x2+13x−910x2−4
Solution
More Steps

Evaluate
3x2−910x2
Collect like terms by calculating the sum or difference of their coefficients
(3−910)x2
Subtract the numbers
More Steps

Evaluate
3−910
Reduce fractions to a common denominator
93×9−910
Write all numerators above the common denominator
93×9−10
Multiply the numbers
927−10
Subtract the numbers
917
917x2
917x2+13x−4
Show Solution

Factor the expression
91(17x2+117x−36)
Evaluate
3x2+13x−910x2−4
Subtract the terms
More Steps

Evaluate
3x2−910x2
Collect like terms by calculating the sum or difference of their coefficients
(3−910)x2
Subtract the numbers
More Steps

Evaluate
3−910
Reduce fractions to a common denominator
93×9−910
Write all numerators above the common denominator
93×9−10
Multiply the numbers
927−10
Subtract the numbers
917
917x2
917x2+13x−4
Solution
91(17x2+117x−36)
Show Solution

Find the roots
x1=−34117+31793,x2=34−117+31793
Alternative Form
x1≈−7.177397,x2≈0.295044
Evaluate
3x2+13x−910x2−4
To find the roots of the expression,set the expression equal to 0
3x2+13x−910x2−4=0
Subtract the terms
More Steps

Simplify
3x2+13x−910x2
Subtract the terms
More Steps

Evaluate
3x2−910x2
Collect like terms by calculating the sum or difference of their coefficients
(3−910)x2
Subtract the numbers
917x2
917x2+13x
917x2+13x−4=0
Multiply both sides
9(917x2+13x−4)=9×0
Calculate
17x2+117x−36=0
Substitute a=17,b=117 and c=−36 into the quadratic formula x=2a−b±b2−4ac
x=2×17−117±1172−4×17(−36)
Simplify the expression
x=34−117±1172−4×17(−36)
Simplify the expression
More Steps

Evaluate
1172−4×17(−36)
Multiply
More Steps

Multiply the terms
4×17(−36)
Rewrite the expression
−4×17×36
Multiply the terms
−2448
1172−(−2448)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
1172+2448
Evaluate the power
13689+2448
Add the numbers
16137
x=34−117±16137
Simplify the radical expression
More Steps

Evaluate
16137
Write the expression as a product where the root of one of the factors can be evaluated
9×1793
Write the number in exponential form with the base of 3
32×1793
The root of a product is equal to the product of the roots of each factor
32×1793
Reduce the index of the radical and exponent with 2
31793
x=34−117±31793
Separate the equation into 2 possible cases
x=34−117+31793x=34−117−31793
Use b−a=−ba=−ba to rewrite the fraction
x=34−117+31793x=−34117+31793
Solution
x1=−34117+31793,x2=34−117+31793
Alternative Form
x1≈−7.177397,x2≈0.295044
Show Solution
