Question
Solve the equation
x1=1850−5298,x2=1850+5298
Alternative Form
x1≈−2.01741,x2≈7.572966
Evaluate
(3×25x2)−(2×3x)=611
Simplify
More Steps

Evaluate
(3×25x2)−(2×3x)
Multiply the terms
253x2−(2×3x)
Multiply the terms
253x2−32x
253x2−32x=611
Multiply both sides of the equation by LCD
(253x2−32x)×150=611×150
Simplify the equation
More Steps

Evaluate
(253x2−32x)×150
Apply the distributive property
253x2×150−32x×150
Simplify
3x2×6−2x×50
Multiply the numbers
18x2−2x×50
Multiply the numbers
18x2−100x
18x2−100x=611×150
Simplify the equation
More Steps

Evaluate
611×150
Simplify
11×25
Multiply the numbers
275
18x2−100x=275
Move the expression to the left side
18x2−100x−275=0
Substitute a=18,b=−100 and c=−275 into the quadratic formula x=2a−b±b2−4ac
x=2×18100±(−100)2−4×18(−275)
Simplify the expression
x=36100±(−100)2−4×18(−275)
Simplify the expression
More Steps

Evaluate
(−100)2−4×18(−275)
Multiply
More Steps

Multiply the terms
4×18(−275)
Rewrite the expression
−4×18×275
Multiply the terms
−19800
(−100)2−(−19800)
Rewrite the expression
1002−(−19800)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
1002+19800
Evaluate the power
10000+19800
Add the numbers
29800
x=36100±29800
Simplify the radical expression
More Steps

Evaluate
29800
Write the expression as a product where the root of one of the factors can be evaluated
100×298
Write the number in exponential form with the base of 10
102×298
The root of a product is equal to the product of the roots of each factor
102×298
Reduce the index of the radical and exponent with 2
10298
x=36100±10298
Separate the equation into 2 possible cases
x=36100+10298x=36100−10298
Simplify the expression
More Steps

Evaluate
x=36100+10298
Divide the terms
More Steps

Evaluate
36100+10298
Rewrite the expression
362(50+5298)
Cancel out the common factor 2
1850+5298
x=1850+5298
x=1850+5298x=36100−10298
Simplify the expression
More Steps

Evaluate
x=36100−10298
Divide the terms
More Steps

Evaluate
36100−10298
Rewrite the expression
362(50−5298)
Cancel out the common factor 2
1850−5298
x=1850−5298
x=1850+5298x=1850−5298
Solution
x1=1850−5298,x2=1850+5298
Alternative Form
x1≈−2.01741,x2≈7.572966
Show Solution
