Question
Solve the equation(The real numbers system)
x∈/R
Alternative Form
No real solution
Evaluate
3x2=6x−23
Move the expression to the left side
3x2−6x+23=0
Substitute a=3,b=−6 and c=23 into the quadratic formula x=2a−b±b2−4ac
x=2×36±(−6)2−4×3×23
Simplify the expression
x=66±(−6)2−4×3×23
Simplify the expression
More Steps

Evaluate
(−6)2−4×3×23
Multiply the terms
More Steps

Multiply the terms
4×3×23
Multiply the terms
12×23
Multiply the numbers
276
(−6)2−276
Rewrite the expression
62−276
Evaluate the power
36−276
Subtract the numbers
−240
x=66±−240
Solution
x∈/R
Alternative Form
No real solution
Show Solution

Solve the equation(The complex numbers system)
Solve using the quadratic formula in the complex numbers system
Solve by completing the square in the complex numbers system
Solve using the PQ formula in the complex numbers system
x1=1−3215i,x2=1+3215i
Alternative Form
x1≈1−2.581989i,x2≈1+2.581989i
Evaluate
3x2=6x−23
Move the expression to the left side
3x2−6x+23=0
Substitute a=3,b=−6 and c=23 into the quadratic formula x=2a−b±b2−4ac
x=2×36±(−6)2−4×3×23
Simplify the expression
x=66±(−6)2−4×3×23
Simplify the expression
More Steps

Evaluate
(−6)2−4×3×23
Multiply the terms
More Steps

Multiply the terms
4×3×23
Multiply the terms
12×23
Multiply the numbers
276
(−6)2−276
Rewrite the expression
62−276
Evaluate the power
36−276
Subtract the numbers
−240
x=66±−240
Simplify the radical expression
More Steps

Evaluate
−240
Evaluate the power
240×−1
Evaluate the power
240×i
Evaluate the power
More Steps

Evaluate
240
Write the expression as a product where the root of one of the factors can be evaluated
16×15
Write the number in exponential form with the base of 4
42×15
The root of a product is equal to the product of the roots of each factor
42×15
Reduce the index of the radical and exponent with 2
415
415×i
x=66±415×i
Separate the equation into 2 possible cases
x=66+415×ix=66−415×i
Simplify the expression
More Steps

Evaluate
x=66+415×i
Divide the terms
More Steps

Evaluate
66+415×i
Rewrite the expression
62(3+215×i)
Cancel out the common factor 2
33+215×i
Simplify
1+3215i
x=1+3215i
x=1+3215ix=66−415×i
Simplify the expression
More Steps

Evaluate
x=66−415×i
Divide the terms
More Steps

Evaluate
66−415×i
Rewrite the expression
62(3−215×i)
Cancel out the common factor 2
33−215×i
Simplify
1−3215i
x=1−3215i
x=1+3215ix=1−3215i
Solution
x1=1−3215i,x2=1+3215i
Alternative Form
x1≈1−2.581989i,x2≈1+2.581989i
Show Solution
