Question
Solve the equation
x=∣3−2y3∣3y−2y4+6−4y3x=−∣3−2y3∣3y−2y4+6−4y3
Evaluate
3x2−2xy3x−2=y
Multiply the terms
3x2−2x2y3−2=y
Rewrite the expression
3x2−2y3x2−2=y
Collect like terms by calculating the sum or difference of their coefficients
(3−2y3)x2−2=y
Move the constant to the right side
(3−2y3)x2=y+2
Divide both sides
3−2y3(3−2y3)x2=3−2y3y+2
Divide the numbers
x2=3−2y3y+2
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±3−2y3y+2
Simplify the expression
More Steps

Evaluate
3−2y3y+2
Rewrite the expression
(3−2y3)(3−2y3)(y+2)(3−2y3)
Calculate
More Steps

Evaluate
(y+2)(3−2y3)
Apply the distributive property
y×3+y(−2y3)+2×3+2(−2y3)
Use the commutative property to reorder the terms
3y+y(−2y3)+2×3+2(−2y3)
Multiply the numbers
3y−2y4+2×3+2(−2y3)
Multiply the numbers
3y−2y4+6+2(−2y3)
Multiply the numbers
3y−2y4+6−4y3
(3−2y3)(3−2y3)3y−2y4+6−4y3
Calculate
9−12y3+4y63y−2y4+6−4y3
To take a root of a fraction,take the root of the numerator and denominator separately
9−12y3+4y63y−2y4+6−4y3
Simplify the radical expression
More Steps

Evaluate
9−12y3+4y6
Factor the expression
(3−2y3)2
Reduce the index of the radical and exponent with 2
3−2y3
∣3−2y3∣3y−2y4+6−4y3
x=±∣3−2y3∣3y−2y4+6−4y3
Solution
x=∣3−2y3∣3y−2y4+6−4y3x=−∣3−2y3∣3y−2y4+6−4y3
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Not symmetry with respect to the origin
Evaluate
3x2−2xy3x−2=y
Multiply the terms
3x2−2x2y3−2=y
To test if the graph of 3x2−2x2y3−2=y is symmetry with respect to the origin,substitute -x for x and -y for y
3(−x)2−2(−x)2(−y)3−2=−y
Evaluate
More Steps

Evaluate
3(−x)2−2(−x)2(−y)3−2
Multiply the terms
3x2−2(−x)2(−y)3−2
Multiply the terms
More Steps

Multiply the terms
−2(−x)2(−y)3
Multiply the terms
−(−2x2y3)
Multiply the first two terms
2x2y3
3x2+2x2y3−2
3x2+2x2y3−2=−y
Solution
Not symmetry with respect to the origin
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=6x2y2+16x−4xy3
Calculate
3x2−2xy3x−2=y
Simplify the expression
3x2−2x2y3−2=y
Take the derivative of both sides
dxd(3x2−2x2y3−2)=dxd(y)
Calculate the derivative
More Steps

Evaluate
dxd(3x2−2x2y3−2)
Use differentiation rules
dxd(3x2)+dxd(−2x2y3)+dxd(−2)
Evaluate the derivative
More Steps

Evaluate
dxd(3x2)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
3×dxd(x2)
Use dxdxn=nxn−1 to find derivative
3×2x
Multiply the terms
6x
6x+dxd(−2x2y3)+dxd(−2)
Evaluate the derivative
More Steps

Evaluate
dxd(−2x2y3)
Use differentiation rules
dxd(−2x2)×y3−2x2×dxd(y3)
Evaluate the derivative
−4xy3−2x2×dxd(y3)
Evaluate the derivative
−4xy3−6x2y2dxdy
6x−4xy3−6x2y2dxdy+dxd(−2)
Use dxd(c)=0 to find derivative
6x−4xy3−6x2y2dxdy+0
Evaluate
6x−4xy3−6x2y2dxdy
6x−4xy3−6x2y2dxdy=dxd(y)
Calculate the derivative
More Steps

Evaluate
dxd(y)
Use differentiation rules
dyd(y)×dxdy
Use dxdxn=nxn−1 to find derivative
dxdy
6x−4xy3−6x2y2dxdy=dxdy
Move the variable to the left side
6x−4xy3−6x2y2dxdy−dxdy=0
Collect like terms by calculating the sum or difference of their coefficients
6x−4xy3+(−6x2y2−1)dxdy=0
Move the constant to the right side
(−6x2y2−1)dxdy=0−(6x−4xy3)
Subtract the terms
More Steps

Evaluate
0−(6x−4xy3)
Removing 0 doesn't change the value,so remove it from the expression
−(6x−4xy3)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−6x+4xy3
(−6x2y2−1)dxdy=−6x+4xy3
Divide both sides
−6x2y2−1(−6x2y2−1)dxdy=−6x2y2−1−6x+4xy3
Divide the numbers
dxdy=−6x2y2−1−6x+4xy3
Solution
More Steps

Evaluate
−6x2y2−1−6x+4xy3
Use b−a=−ba=−ba to rewrite the fraction
−6x2y2+1−6x+4xy3
Rewrite the expression
6x2y2+16x−4xy3
dxdy=6x2y2+16x−4xy3
Show Solution
