Question
Find the roots
x1=31−10,x2=31+10
Alternative Form
x1≈−0.720759,x2≈1.387426
Evaluate
3x2−2x−3
To find the roots of the expression,set the expression equal to 0
3x2−2x−3=0
Substitute a=3,b=−2 and c=−3 into the quadratic formula x=2a−b±b2−4ac
x=2×32±(−2)2−4×3(−3)
Simplify the expression
x=62±(−2)2−4×3(−3)
Simplify the expression
More Steps

Evaluate
(−2)2−4×3(−3)
Multiply
More Steps

Multiply the terms
4×3(−3)
Rewrite the expression
−4×3×3
Multiply the terms
−36
(−2)2−(−36)
Rewrite the expression
22−(−36)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
22+36
Evaluate the power
4+36
Add the numbers
40
x=62±40
Simplify the radical expression
More Steps

Evaluate
40
Write the expression as a product where the root of one of the factors can be evaluated
4×10
Write the number in exponential form with the base of 2
22×10
The root of a product is equal to the product of the roots of each factor
22×10
Reduce the index of the radical and exponent with 2
210
x=62±210
Separate the equation into 2 possible cases
x=62+210x=62−210
Simplify the expression
More Steps

Evaluate
x=62+210
Divide the terms
More Steps

Evaluate
62+210
Rewrite the expression
62(1+10)
Cancel out the common factor 2
31+10
x=31+10
x=31+10x=62−210
Simplify the expression
More Steps

Evaluate
x=62−210
Divide the terms
More Steps

Evaluate
62−210
Rewrite the expression
62(1−10)
Cancel out the common factor 2
31−10
x=31−10
x=31+10x=31−10
Solution
x1=31−10,x2=31+10
Alternative Form
x1≈−0.720759,x2≈1.387426
Show Solution
