Question
Solve the equation
x1=−30427000,x2=0,x3=30427000
Alternative Form
x1≈−0.427287,x2=0,x3≈0.427287
Evaluate
3x2−30x6×3=0
Multiply the terms
3x2−90x6=0
Factor the expression
3x2(1−30x4)=0
Divide both sides
x2(1−30x4)=0
Separate the equation into 2 possible cases
x2=01−30x4=0
The only way a power can be 0 is when the base equals 0
x=01−30x4=0
Solve the equation
More Steps

Evaluate
1−30x4=0
Move the constant to the right-hand side and change its sign
−30x4=0−1
Removing 0 doesn't change the value,so remove it from the expression
−30x4=−1
Change the signs on both sides of the equation
30x4=1
Divide both sides
3030x4=301
Divide the numbers
x4=301
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±4301
Simplify the expression
More Steps

Evaluate
4301
To take a root of a fraction,take the root of the numerator and denominator separately
43041
Simplify the radical expression
4301
Multiply by the Conjugate
430×43034303
Simplify
430×4303427000
Multiply the numbers
30427000
x=±30427000
Separate the equation into 2 possible cases
x=30427000x=−30427000
x=0x=30427000x=−30427000
Solution
x1=−30427000,x2=0,x3=30427000
Alternative Form
x1≈−0.427287,x2=0,x3≈0.427287
Show Solution
