Question Simplify the expression 3x2−132x3 Evaluate 3x2−33x3×4Solution 3x2−132x3 Show Solution Factor the expression 3x2(1−44x) Evaluate 3x2−33x3×4Multiply the terms 3x2−132x3Rewrite the expression 3x2−3x2×44xSolution 3x2(1−44x) Show Solution Find the roots x1=0,x2=441Alternative Form x1=0,x2=0.022˙7˙ Evaluate 3x2−33x3×4To find the roots of the expression,set the expression equal to 0 3x2−33x3×4=0Multiply the terms 3x2−132x3=0Factor the expression 3x2(1−44x)=0Divide both sides x2(1−44x)=0Separate the equation into 2 possible cases x2=01−44x=0The only way a power can be 0 is when the base equals 0 x=01−44x=0Solve the equation More Steps Evaluate 1−44x=0Move the constant to the right-hand side and change its sign −44x=0−1Removing 0 doesn't change the value,so remove it from the expression −44x=−1Change the signs on both sides of the equation 44x=1Divide both sides 4444x=441Divide the numbers x=441 x=0x=441Solution x1=0,x2=441Alternative Form x1=0,x2=0.022˙7˙ Show Solution